1,448 research outputs found

    Soft chemistry synthesis of the perovskite CaCu3Ti4O12

    Get PDF
    The perovskite CaCu3Ti4O12 (CCT) has been obtained after calcination of oxalate precursors at 900–1000 °C in air. Those precursors are prepared using a soft chemistry method, the coprecipitation. The oxalate powders consist of disk-like particles of 2–3 ÎŒm diameter and 300–400 nm thickness. By varying the ratio of the initial amounts of metal chlorides, additional phases (CaTiO3, TiO2 and CuO) could be obtained besides CCT. The corresponding multiphased ceramics present improved dielectric properties

    Internal friction investigation of phase transformation in nearly stoichiometric LaMnO3+ÎŽ

    Get PDF
    Rhombohedral LaMnO3+ή powders, prepared by two different soft chemistry routes (co-precipitation and hydrothermal synthesis), are sintered at 1400 °C for 2 h in air. Measurements of internal friction Q−1(T) and shear modulus G(T), at low frequencies from −180 to 700 °C under vacuum, evidence three structural transitions of nearly stoichiometric orthorhombic LaMnO3+ή. The first one, at 250 or 290 °C, depending on the processing followed, is associated to either a Jahn–Teller structural transition or a phase transformation from orthorhombic to pseudo-cubic. The second one at 610 or 630 °C is related to a phase transformation from pseudo-cubic or orthorhombic to rhombohedral. Below the Neel temperature, around −170 °C, a relaxation peak could be associated, for samples prepared according to both processing routes, to the motion of Weiss domains

    Dielectric properties of CaCu3Ti4O12 based multiphased ceramics

    Get PDF
    A “soft chemistry” method, the coprecipitation, has been used to synthesize the perovskite CaCu3Ti4O12 (CCT). Three main types of materials were obtained for both powders and sintered ceramics: a monophased consisting of the pure CCT phase, a biphased (CCT + CaTiO3), and a three-phased (CCT + CaTiO3 + copper oxide (CuO or Cu2O)). These ceramics, sintered at low temperature, 1050 °C, present original dielectric properties. The relative permittivity determined in the temperature range (−150 < T < 250 °C) is significantly higher than the one reported in the literature. Internal barrier layer capacitor is the probable mechanism to explain the particular behaviour. Moreover, the presence of a copper oxide phase beside the perovksite CCT plays an important role for enhancing the dielectric properties

    Mixed manganese spinel oxides: optical properties in the infrared range

    Get PDF
    Spinel oxides in manganite family are studied in terms of optical properties in the infrared range (3–12 lm). The reflectivity is measured on sintered pellets. The complex refractive index is estimated by fitting hemispherical directional reflectance in both polarizations, perpendicular and parallel. The influence of different metallic cations (Ni, Co, Fe, Cu) is compared. In particular, in the case of manganese nickel copper oxides, the impact of variations in copper and nickel contents is evaluated. Cationic distribution is determined and correlated to the optical characteristics. These materials, usually used for NTC thermistor applications, are investigated for IR charges in coating

    A general route to the synthesis of surfactant-free, solvent-dispersible ternary and quaternary chalcogenide nanocrystals

    Get PDF
    A general route to the synthesis of surfactant-free CuInS2 (CIS), Cu2CoSnS4 (CCTS) and Cu2ZnSnS4 (CZTS) nanocrystals dispersible in low boiling point solvents is proposed. These nanocrystal inks should be of great interest to the fabrication of thin film absorbers of chalcogenide solar cells

    Hydrothermal synthesis of nanosized BaTiO3 powders and dielectric properties of corresponding ceramics

    Get PDF
    BaTiO3 fine powders were synthesized by hydrothermal method at 150 °C or 250 °C for 7 h, starting from a mixture of TiCl3 + BaCl2 or TiO2 + BaCl2. The size of the crystallites is close to 20 nm whatever the starting mixture and the reaction temperature. These powders are well crystallized and constituted of a mixture of the metastable cubic and stable tetragonal phases. The ceramics obtained after uniaxial pressing and sintering at 1250 °C for 10 h or 20 h present high densification (up to 99.8%). The Curie temperature (Tc) and the electrical permittivity ( r) of the ceramics strongly depend on the type of titanium source that has been used for preparing the powder and on the sintering dwell time. Particularly, Tc is shifted towards lower temperature when TiCl3 is used. The permittivity value at Tc of BaTiO3 sintered at 1250 °C for 10 h reaches 7000 and 11,000 with respectively TiCl3 and TiO2 used as titanium source

    Grain Growth-Controlled Giant Permittivity in Soft Chemistry CaCu3Ti4O12 Ceramics

    Get PDF
    We report a dielectric constant of up to 5.4105 at room temperature and 1 kHz for CaCu3Ti4O12 (CCTO) ceramics, derived from multiphase powders (coprecipitation products), made by a ‘‘chimie douce’’ (coprecipitation) method, and then sintered in air. The sintered products are pure-phase CCTO ceramics. The high dielectric constant is achieved by tuning the size of grains and the thickness of grain boundaries. The grain growth is controlled by varying the concentration of excess CuO in the initial powder (calcined coprecipitation products) between 1 and 3.1 wt%. The dielectric constant of pure CCTO ceramics increases with the initial CuO concentration, reaching its maximum at 2.4 wt% of CuO. A further increase of excess CuO in powders results in a permittivity decrease, accompanied by the formation of CuO as a separate phase in the sintered products. The unusual grain growth behavior is attributed to a eutectic reaction between CuO and TiO2 present in the initial powder

    Reactivity of aluminum sulfate and silica in molten alkalimetal sulfates in order to prepare mullite

    Get PDF
    With the aim of preparing mullite, reactions between aluminum sulfate and silica in appropriate proportions and molten sulfate media M2SO4 (M=Na and/or K) were performed at different temperatures. The powders obtained were characterized by XRD, FT-IR, SEM and TEM. The reactivity was the same in Na2SO4 and (K,Na)2SO4 media. The best results in terms of yield (98.3%) and weight of mullite produced (95%) were obtained in Na2SO4 at 950 °C. The mullite phase exhibits an acicular morphology (75×0.75 ÎŒm) and a specific surface area close to 20 m2/g. In K2SO4 medium, a potassium alumino silicate is formed as well as mullite
    • 

    corecore