23,878 research outputs found
A simplified PERT system
Modified PERT technique processes the input data and arranges it in familiar graphic form in a booklet which is issued at periodic intervals. The tabulated data provides readily available information to management personnel concerned with monitoring the progress of a program
Design, fabrication and test of prototype furnace for continuous growth of wide silicon ribbon
A program having the overall objective of growing wide, thin silicon dendritic web crystals quasi-continuously from a semi-automated facility is discussed. The design considerations and fabrication of the facility as well as the test and operation phase are covered; detailed engineering drawings are included as an appendix. During the test and operation phase of the program, more than eighty growth runs and numerous thermal test runs were performed. At the conclusion of the program, 2.4 cm wide web was being grown at thicknesses of 100 to 300 micrometers. As expected, the thickness and growth rate are closely related. Solar cells made from this material were tested at NASA-Lewis and found to have conversion efficiencies comparable to devices fabricated from Czochralski material
Silicon ribbon study program
The feasibility is studied of growing wide, thin silicon dendritic web for solar cell fabrication and conceptual designs are developed for the apparatus required. An analysis of the mechanisms of dendritic web growth indicated that there were no apparent fundamental limitations to the process. The analysis yielded quantitative guidelines for the thermal conditions required for this mode of crystal growth. Crucible designs were then investigated: the usual quartz crucible configurations and configurations in which silicon itself is used for the crucible. The quartz crucible design is feasible and is incorporated into a conceptual design for a laboratory scale crystal growth facility capable of semi-automated quasi-continuous operation
Mass-radius relation for magnetized strange quark stars
We review the stability of magnetized strange quark matter (MSQM) within the
phenomenological MIT bag model, taking into account the variation of the
relevant input parameters, namely, the strange quark mass, baryon density,
magnetic field and bag parameter. A comparison with magnetized asymmetric quark
matter in -equilibrium as well as with strange quark matter (SQM) is
presented. We obtain that the energy per baryon for MSQM decreases as the
magnetic field increases, and its minimum value at vanishing pressure is lower
than the value found for SQM, which implies that MSQM is more stable than
non-magnetized SQM. The mass-radius relation for magnetized strange quark stars
is also obtained in this framework.Comment: 7 pages, 6 figures. To be published in the Proceedings of 4th
International Workshop on Relativistic Astrophysical and Astronomy IWARA0
A study of resistojet systems directed to the space station/base Final report
Biowaste resistojet subsystem for integrated environmental control and life support of space statio
Furnace and support equipment for space processing
A core facility capable of performing a majority of materials processing experiments is discussed. Experiment classes are described, the needs peculiar to each experiment type are outlined, and projected facility requirements to perform the experiments are treated. Control equipment (automatic control) and variations of the Czochralski method for use in space are discussed
Large-area sheet task advanced dendritic web growth development
The thermal models used for analyzing dendritic web growth and calculating the thermal stress were reexamined to establish the validity limits imposed by the assumptions of the models. Also, the effects of thermal conduction through the gas phase were evaluated and found to be small. New growth designs, both static and dynamic, were generated using the modeling results. Residual stress effects in dendritic web were examined. In the laboratory, new techniques for the control of temperature distributions in three dimensions were developed. A new maximum undeformed web width of 5.8 cm was achieved. A 58% increase in growth velocity of 150 micrometers thickness was achieved with dynamic hardware. The area throughput goals for transient growth of 30 and 35 sq cm/min were exceeded
Advanced dendritic web growth development and development of single-crystal silicon dendritic ribbon and high-efficiency solar cell program
Efforts to demonstrate that the dendritic web technology is ready for commercial use by the end of 1986 continues. A commercial readiness goal involves improvements to crystal growth furnace throughput to demonstrate an area growth rate of greater than 15 sq cm/min while simultaneously growing 10 meters or more of ribbon under conditions of continuous melt replenishment. Continuous means that the silicon melt is being replenished at the same rate that it is being consumed by ribbon growth so that the melt level remains constant. Efforts continue on computer thermal modeling required to define high speed, low stress, continuous growth configurations; the study of convective effects in the molten silicon and growth furnace cover gas; on furnace component modifications; on web quality assessments; and on experimental growth activities
Large-area sheet task: Advanced dendritic-web-growth development
Thermally generated stresses in the growing web crystal were reduced. These stresses, which if too high cause the ribbon to degenerate, were reduced by a factor of three, resulting in the demonstrated growth of high-quality web crystals to widths of 5.4 cm. This progress was brought about chiefly by the application of thermal models to the development of low-stress growth configurations. A new temperature model was developed which can analyze the thermal effects of much more complex lid and top shield configurations than was possible with the old lumped shield model. Growth experiments which supplied input data such as actual shield temperature and melt levels were used to verify the modeling results. Desirable modifications in the melt level-sensing circuitry were made in the new experimental web growth furnace, and this furnace has been used to carry out growth experiments under steady-state conditions. New growth configurations were tested in long growth runs at Westinghouse AESD which produced wider, lower stress and higher quality web crystals than designs previously used
- …