6 research outputs found

    Developing the next generation of renewable energy technologies:an overview of low-TRL EU-funded research projects

    Get PDF
    A cluster of eleven research and innovation projects, funded under the same call of the EU’s H2020 programme, are developing breakthrough and game-changing renewable energy technologies that will form the backbone of the energy system by 2030 and 2050 are, at present, at an early stage of development. These projects have joined forces at a collaborative workshop, entitled ‘ Low-TRL Renewable Energy Technologies’, at the 10th Sustainable Places Conference (SP2022), to share their insights, present their projects’ progress and achievements to date, and expose their approach for exploitation and market uptake of their solutions.</p

    Developing the next generation of renewable energy technologies:an overview of low-TRL EU-funded research projects

    Get PDF
    A cluster of eleven research and innovation projects, funded under the same call of the EU’s H2020 programme, are developing breakthrough and game-changing renewable energy technologies that will form the backbone of the energy system by 2030 and 2050 are, at present, at an early stage of development. These projects have joined forces at a collaborative workshop, entitled ‘ Low-TRL Renewable Energy Technologies’, at the 10th Sustainable Places Conference (SP2022), to share their insights, present their projects’ progress and achievements to date, and expose their approach for exploitation and market uptake of their solutions.</p

    Heat and power storage using aluminium for low and zero energy buildings

    No full text
    A new concept for seasonal energy storage (both heat and power) for low and zero energy buildings based on an aluminium redox cycle (Al→Al3+→Al) is proposed. The main advantage of this seasonal energy storage concept is the high volumetric energy density of aluminium (21 MWh/m3), which exceeds common storage materials like coal. To charge the storage, oxidized aluminium (Al3+) is reduced to elementary aluminium (Al) in a central processing plant using renewable electricity in summer. In winter, during discharging process, the energy stored in aluminium is released in form of hydrogen and heat via the aluminium – water reaction. Hydrogen is directly converted to electricity and heat in a fuel cell. The discharging phase has been investigated using a laboratory-scale experimental setup. In optimized conditions, heat and hydrogen is reliably produced for all types of aluminium forms (grit, pellets, foil). A high efficiency of the conversion to hydrogen was obtained (>95%). The remaining challenge is to optimize the entire cycle, e.g. the aluminium recovery process via the use of climate-neutral inert electrodes

    Developing the next generation of renewable energy technologies: an overview of low-TRL EU-funded research projects [version 2; peer review: 1 approved, 3 approved with reservations]

    No full text
    A cluster of eleven research and innovation projects, funded under the same call of the EU’s H2020 programme, are developing breakthrough and game-changing renewable energy technologies that will form the backbone of the energy system by 2030 and 2050 are, at present, at an early stage of development. These projects have joined forces at a collaborative workshop, entitled ‘Low-TRL Renewable Energy Technologies’, at the 10th Sustainable Places Conference (SP2022), to share their insights, present their projects’ progress and achievements to date, and expose their approach for exploitation and market uptake of their solutions
    corecore