10 research outputs found

    Multiple coat protein mutations abolish recognition of Pepino mosaic potexvirus (PepMV) by the potato rx resistance gene in transgenic tomatoes

    No full text
    Despite the fact that Pepino mosaic virus (PepMV) and Potato virus X (PVX) share less than 40% identity in their coat proteins (CP), the known PVX elicitor of Rx, transgenic tomato (cv. Microtom) plants expressing a functional potato Rx resistance gene showed resistance toward PepMV. However, in a low percentage of plants, PepMV accumulation was observed and back inoculation experiments demonstrated that these plants contained resistance-breaking PepMV variants. Sequencing of the CP gene of these variants showed the accumulation of mutations in the amino acid 41 to 125 region the CP, whereas no mutations were observed in the nonevolved isolates. Agroinfiltration-mediated transient expression of the mutant CP demonstrated that they had a greatly attenuated or abolished ability to induce a hypersensitive reaction in Rx-expressing Nicotiana benthamiana leaves. The transient expression of truncated forms of the PepMV CP allowed the identification of a minimal elicitor domain (amino acids 30 to 136). These results demonstrate that the Rx-based sensing system is able to recognize the PepMV CP but, contrary to the situation with PVX, for which only two closely spaced resistance-breaking mutations are known, many mutations over a significant stretch of the PepMV CP allow escape from recognition by Rx

    Identification and characterization of tomato mutants affected in the Rx-mediated resistance to PVX isolates

    No full text
    Five tomato mutants affected in the Rx-mediated resistance against Potato virus X (PVX) were identified by screening a mutagenized population derived from a transgenic, Rx1-expressing 'Micro-Tom' line. Contrary to their parental line, they failed to develop lethal systemic necrosis upon infection with the virulent PVX-KH2 isolate. Sequence analysis and quantitative reverse-transcription polymerase chain reaction experiments indicated that the mutants are not affected in the Rx1 transgene or in the Hsp90, RanGap1 and RanGap2, Rar1 and Sgt1 genes. Inoculation with the PVX-CP4 avirulent isolate demonstrated that the Rx1 resistance was still effective in the mutants. In contrast, the virulent PVX-KH2 isolate accumulation was readily detectable in all mutants, which could further be separated in two groups depending on their ability to restrict the accumulation of PVX-RR, a mutant affected at two key positions for Rx1 elicitor activity. Finally, transient expression of the viral capsid protein elicitor indicated that the various mutants have retained the ability to mount an Rx1-mediated hypersensitive response. Taken together, the results obtained are consistent with a modification of the specificity or intensity of the Rx1-mediated response. The five Micro-Tom mutants should provide very valuable resources for the identification of novel tomato genes affecting the functioning of the Rx gene

    Proteolytic Post-Translational Processing of Adhesins in a Pathogenic Bacterium.

    No full text
    Mollicutes, including mycoplasmas and spiroplasmas, have been considered as good representatives of the « minimal cell » concept: these wall-less bacteria are small in size and possess a minimal genome and restricted metabolic capacities. However, the recent discovery of the presence of post-translational modifications unknown so far, such as the targeted processing of membrane proteins of mycoplasma pathogens for human and swine, revealed a part of the hidden complexity of these microorganisms. In this study, we show that in the phytopathogen, insect-vectored Spiroplasma citri GII-3 adhesion-related protein (ScARP) adhesins are post-translationally processed through an ATP-dependent targeted cleavage. The cleavage efficiency could be enhanced in vitro when decreasing the extracellular pH or upon the addition of polyclonal antibodies directed against ScARP repeated units, suggesting that modification of the surface charge and/or ScARP conformational changes could initiate the cleavage. The two major sites for primary cleavage are localized within predicted disordered regions and do not fit any previously reported cleavage motif; in addition, the inhibition profile and the metal ion requirements indicate that this post-translational modification involves at least one non-conventional protease. Such a proteolytic process may play a role in S. citri colonization of cells of the host insect. Furthermore, our work indicates that post-translational cleavage of adhesins represents a common feature to mollicutes colonizing distinct hosts and that processing of surface antigens could represent a way to make the most out of a minimal genome

    The variable membrane protein VmpA of Flavescence dorée phytoplasma interacts with cells of the insect vector Euscelidius variegatus

    No full text
    UMR BFP - Equipe MollicutesThe variable membrane protein VmpA of Flavescence dorée phytoplasma interacts with cells of the insect vector [i]Euscelidius variegatus[/i]. 3. Hemipteran-Plant Interactions Symposium. HPIS 201

    The variable membrane protein VmpA of Flavescence dorée phytoplasma interacts with cells of the insect vector Euscelidius variegatus

    No full text
    The variable membrane protein VmpA of Flavescence dorée phytoplasma interacts with cells of the insect vector [i]Euscelidius variegatus[/i]. 3. Hemipteran-Plant Interactions Symposium. HPIS 201
    corecore