1,079 research outputs found
Shear sum rules at finite chemical potential
We derive sum rules which constrain the spectral density corresponding to the
retarded propagator of the T_{xy} component of the stress tensor for three
gravitational duals. The shear sum rule is obtained for the gravitational dual
of the N=4 Yang-Mills, theory of the M2-branes and M5-branes all at finite
chemical potential. We show that at finite chemical potential there are
additional terms in the sum rule which involve the chemical potential. These
modifications are shown to be due to the presence of scalars in the operator
product expansion of the stress tensor which have non-trivial vacuum
expectation values at finite chemical potential.Comment: The proof for the absence of branch cuts is corrected.Results
unchange
Sum rules and three point functions
Sum rules constraining the R-current spectral densities are derived
holographically for the case of D3-branes, M2-branes and M5-branes all at
finite chemical potentials. In each of the cases the sum rule relates a certain
integral of the spectral density over the frequency to terms which depend both
on long distance physics, hydrodynamics and short distance physics of the
theory. The terms which which depend on the short distance physics result from
the presence of certain chiral primaries in the OPE of two R-currents which are
turned on at finite chemical potential. Since these sum rules contain
information of the OPE they provide an alternate method to obtain the structure
constants of the two R-currents and the chiral primary. As a consistency check
we show that the 3 point function derived from the sum rule precisely matches
with that obtained using Witten diagrams.Comment: 41 page
Diffusion constant of supercharge density in N=4 SYM at finite chemical potential
We compute holographically the diffusion constant of supercharges in N=4 SYM
at finite chemical potential for the R-charge, by solving the equations of
motion for the transverse mode of the gravitino in the STU black hole in 5
dimensions. We consider the case of one charge and three charges, and we
present analytical solutions for small values of the charges and numerical
solutions for arbitrary values. We compare our results with other known results
in 4 dimensions.Comment: 20 pages, 4 figures; v2: typos correcte
The Sound of Topology in the AdS/CFT Correspondence
Using the gauge/gravity correspondence, we study the properties of 2-point
correlation functions of finite-temperature strongly coupled gauge field
theories, defined on a curved space of general spatial topology with a dual
black hole description. We derive approximate asymptotic expressions for the
correlation functions and their poles, supported by exact numerical
calculations, and study their dependence on the dimension of spacetime and the
spatial topology. The asymptotic structure of the correlation functions depends
on the relation between the spatial curvature and the temperature, and is
noticeable when they are of the same order. In the case of a hyperbolic
topology, a specific temperature is identified for which exact analytical
solutions exist for all types of perturbations. The asymptotic structure of the
correlation functions poles is found to behave in a non-smooth manner when
approaching this temperature.Comment: 65 pages, LaTeX, 21 figures, 1 table; fixed a small error in
subsection 3.
Hydrodynamics and the Detection of the QCD Axial Anomaly in Heavy Ion Collisions
We consider the experimental implications of the axial current triangle
diagram anomaly in a hydrodynamic description of high density QCD. We propose a
signal of an enhanced production of spin-excited hadrons in the direction of
the rotation axis in off-central heavy ion collisions.Comment: 15 pages, 19 figures; v2: refs added, minor changes to the plots; v3,
comments adde
The Dropping of In-Medium Hadron Mass in Holographic QCD
We study the baryon density dependence of the vector meson spectrum using the
D4/D6 system together with the compact D4 baryon vertex. We find that the
vector meson mass decreases almost linearly in density at low density for small
quark mass, but saturates to a finite non-zero value for large density. We also
compute the density dependence of the mass and the
velocity. We find that in medium, our model is consistent with the GMOR
relation up to a few times the normal nuclear density. We compare our hQCD
predictions with predictions made based on hidden local gauge theory that is
constructed to model QCD.Comment: 20 pages, 7 figure
Viscosity Bound and Causality in Superfluid Plasma
It was argued by Brigante et.al that the lower bound on the ratio of the
shear viscosity to the entropy density in strongly coupled plasma is translated
into microcausality violation in the dual gravitational description. Since
transport properties of the system characterize its infrared dynamics, while
the causality of the theory is determined by its ultraviolet behavior, the
viscosity bound/microcausality link should not be applicable to theories that
undergo low temperature phase transitions. We present an explicit model of
AdS/CFT correspondence that confirms this fact.Comment: 27 pages, 5 figures. References added, typos fixe
Hydrodynamics in 1+1 dimensions with gravitational anomalies
The constraints imposed on hydrodynamics by the structure of gauge and
gravitational anomalies are studied in two dimensions. By explicit integration
of the consistent gravitational anomaly, we derive the equilibrium partition
function at second derivative order. This partition function is then used to
compute the parity-violating part of the covariant energy-momentum tensor and
the transport coefficients.Comment: 9 pages, JHEP format.v2; added comments and references, matching
published versio
Relativistic Hydrodynamics with General Anomalous Charges
We consider the hydrodynamic regime of gauge theories with general triangle
anomalies, where the participating currents may be global or gauged, abelian or
non-abelian. We generalize the argument of arXiv:0906.5044, and construct at
the viscous order the stress-energy tensor, the charge currents and the entropy
current.Comment: 13 pages, Revte
Anomalies in Superfluids and a Chiral Electric Effect
We analyze the chiral transport terms in relativistic superfluid
hydrodynamics. In addition to the spontaneously broken symmetry current, we
consider an arbitrary number of unbroken symmetries and extend the results of
arXiv:1105.3733. We suggest an interpretation of some of the new transport
coefficients in terms of chiral and gravitational anomalies. In particular, we
show that with unbroken gauged charges in the system, one can observe a chiral
electric conductivity - a current in a perpendicular direction to the applied
electric field. We present a motivated proposal for the value of the associated
transport coefficient, linking it to the triangle anomaly. Along the way we
present new arguments regarding the interpretation of the anomalous transport
coefficients in normal fluids. We propose a natural generalization of the
chiral transport terms to the case of an arbitrary number of spontaneously
broken symmetry currents.Comment: 30 pages; v2: Onsager-relations argument corrected, references added;
v3: fixed missing line in eq. (38
- …