60 research outputs found

    Designing a physical activity parenting course : parental views on recruitment, content and delivery

    Get PDF
    Background Many children do not engage in sufficient levels of physical activity (PA) and spend too much time screen-viewing (SV). High levels of SV (e.g. watching TV, playing video games and surfing the internet) and low levels of PA have been associated with adverse health outcomes. Parenting courses may hold promise as an intervention medium to change children’s PA and SV. The current study was formative work conducted to design a new parenting programme to increase children’s PA and reduce their SV. Specifically, we focussed on interest in a course, desired content and delivery style, barriers and facilitators to participation and opinions on control group provision. Methods In-depth telephone interviews were conducted with thirty two parents (29 female) of 6–8 year olds. Data were analysed thematically. An anonymous online survey was also completed by 750 parents of 6–8 year old children and descriptive statistics calculated. Results Interview participants were interested in a parenting course because they wanted general parenting advice and ideas to help their children be physically active. Parents indicated that they would benefit from knowing how to quantify their child’s PA and SV levels. Parents wanted practical ideas of alternatives to SV. Most parents would be unable to attend unless childcare was provided. Schools were perceived to be a trusted source of information about parenting courses and the optimal recruitment location. In terms of delivery style, the majority of parents stated they would prefer a group-based approach that provided opportunities for peer learning and support with professional input. Survey participants reported the timing of classes and the provision of childcare were essential factors that would affect participation. In terms of designing an intervention, the most preferred control group option was the opportunity to attend the same course at a later date. Conclusions Parents are interested in PA/SV parenting courses but the provision of child care is essential for attendance. Recruitment is likely to be facilitated via trusted sources. Parents want practical advice on how to overcome barriers and suggest advice is provided in a mutually supportive group experience with expert input

    Prenatal Hypoxic-Ischemic Insult Changes the Distribution and Number of NADPH-Diaphorase Cells in the Cerebellum

    Get PDF
    Astrogliosis, oligodendroglial death and motor deficits have been observed in the offspring of female rats that had their uterine arteries clamped at the 18th gestational day. Since nitric oxide has important roles in several inflammatory and developmental events, here we evaluated NADPH-diaphorase (NADPH-d) distribution in the cerebellum of rats submitted to this hypoxia-ischemia (HI) model. At postnatal (P) day 9, Purkinje cells of SHAM and non-manipulated (NM) animals showed NADPH-d+ labeling both in the cell body and dendritic arborization in folia 1 to 8, while HI animals presented a weaker labeling in both cellular structures. NADPH-d+ labeling in the molecular (ML), and in both the external and internal granular layer, was unaffected by HI at this age. At P23, labeling in Purkinje cells was absent in all three groups. Ectopic NADPH-d+ cells in the ML of folia 1 to 4 and folium 10 were present exclusively in HI animals. This labeling pattern was maintained up to P90 in folium 10. In the cerebellar white matter (WM), at P9 and P23, microglial (ED1+) NADPH-d+ cells, were observed in all groups. At P23, only HI animals presented NADPH-d labeling in the cell body and processes of reactive astrocytes (GFAP+). At P9 and P23, the number of NADPH-d+ cells in the WM was higher in HI animals than in SHAM and NM ones. At P45 and at P90 no NADPH-d+ cells were observed in the WM of the three groups. Our results indicate that HI insults lead to long-lasting alterations in nitric oxide synthase expression in the cerebellum. Such alterations in cerebellar differentiation might explain, at least in part, the motor deficits that are commonly observed in this model

    Using Shifts in Amino Acid Frequency and Substitution Rate to Identify Latent Structural Characters in Base-Excision Repair Enzymes

    Get PDF
    Protein evolution includes the birth and death of structural motifs. For example, a zinc finger or a salt bridge may be present in some, but not all, members of a protein family. We propose that such transitions are manifest in sequence phylogenies as concerted shifts in substitution rates of amino acids that are neighbors in a representative structure. First, we identified rate shifts in a quartet from the Fpg/Nei family of base excision repair enzymes using a method developed by Xun Gu and coworkers. We found the shifts to be spatially correlated, more precisely, associated with a flexible loop involved in bacterial Fpg substrate specificity. Consistent with our result, sequences and structures provide convincing evidence that this loop plays a very different role in other family members. Second, then, we developed a method for identifying latent protein structural characters (LSC) given a set of homologous sequences based on Gu's method and proximity in a high-resolution structure. Third, we identified LSC and assigned states of LSC to clades within the Fpg/Nei family of base excision repair enzymes. We describe seven LSC; an accompanying Proteopedia page (http://proteopedia.org/wiki/index.php/Fpg_Nei_Protein_Family) describes these in greater detail and facilitates 3D viewing. The LSC we found provided a surprisingly complete picture of the interaction of the protein with the DNA capturing familiar examples, such as a Zn finger, as well as more subtle interactions. Their preponderance is consistent with an important role as phylogenetic characters. Phylogenetic inference based on LSC provided convincing evidence of independent losses of Zn fingers. Structural motifs may serve as important phylogenetic characters and modeling transitions involving structural motifs may provide a much deeper understanding of protein evolution
    • …
    corecore