1,345 research outputs found

    Expression of Functional Recombinant Mussel Adhesive Protein Mgfp-5 in Escherichia coli

    Get PDF
    Mussel adhesive proteins have been suggested as a basis for environmentally friendly adhesives for use in aqueous conditions and in medicine. However, attempts to produce functional and economical recombinant mussel adhesive proteins (mainly foot protein type 1) in several systems have failed. Here, the cDNA coding for Mytilus galloprovincialis foot protein type 5 (Mgfp-5) was isolated for the first time. Using this cDNA, we produced a recombinant Mgfp-5 fused with a hexahistidine affinity ligand, which was expressed in a soluble form in Escherichia coli and was highly purified using affinity chromatography. The adhesive properties of purified recombinant Mgfp-5 were compared with the commercial extracted mussel adhesive Cell-Tak by investigating adhesion force using atomic force microscopy, material surface coating, and quartz crystal microbalance. Even though further macroscale assays are needed, these microscale assays showed that recombinant Mgfp-5 has significant adhesive ability and may be useful as a bioadhesive in medical or underwater environments.X119196sciescopu

    Complexation and coacervation of like-charged polyelectrolytes inspired by mussels

    Get PDF
    It is well known that polyelectrolyte complexes and coacervates can form on mixing oppositely charged polyelectrolytes in aqueous solutions, due to mainly electrostatic attraction between the oppositely charged polymers. Here, we report the first (to the best of our knowledge) complexation and coacervation of two positively charged polyelectrolytes, which provides a new paradigm for engineering strong, self-healing interactions between polyelectrolytes underwater and a new marine mussel-inspired underwater adhesion mechanism. Unlike the conventional complex coacervate, the like-charged coacervate is aggregated by strong short-range cation-p interactions by overcoming repulsive electrostatic interactions. The resultant phase of the like-charged coacervate comprises a thin and fragile polyelectrolyte framework and round and regular pores, implying a strong electrostatic correlation among the polyelectrolyte frameworks. The like-charged coacervate possesses a very low interfacial tension, which enables this highly positively charged coacervate to be applied to capture, carry, or encapsulate anionic biomolecules and particles with a broad range of applications.113320Ysciescopu

    Noninvasive imaging of radiolabeled exosome-mimetic nanovesicle using Tc-99m-HMPAO

    Get PDF
    Exosomes known as nano-sized extracellular vesicles attracted recent interests due to their potential usefulness in drug delivery. Amid remarkable advances in biomedical applications of exosomes, it is crucial to understand in vivo distribution and behavior of exosomes. Here, we developed a simple method for radiolabeling of macrophage-derived exosome-mimetic nanovesicles (ENVs) with Tc-99m-HMPAO under physiologic conditions and monitored in vivo distribution of Tc-99m-HMPAO-ENVs using SPECT/CT in living mice. ENVs were produced from the mouse RAW264.7 macrophage cell line and labeled with Tc-99m-HMPAO for 1 hr incubation, followed by removal of free Tc-99m-HMPAO. SPECT/CT images were serially acquired after intravenous injection to BALB/c mouse. When ENVs were labeled with Tc-99m-HMPAO, the radiochemical purity of Tc-99m-HMPAO-ENVs was higher than 90% and the expression of exosome specific protein (CD63) did not change in Tc-99m-HMPAO-ENVs. Tc-99m-HMPAOENVs showed high serum stability (90%) which was similar to that in phosphate buffered saline until 5 hr. SPECT/CT images of the mice injected with Tc-99m-HMPAO-ENVs exhibited higher uptake in liver and no uptake in brain, whereas mice injected with Tc-99m-HMPAO showed high brain uptake until 5 hr. Our noninvasive imaging of radiolabeled-ENVs promises better understanding of the in vivo behavior of exosomes for upcoming biomedical application.114327Ysciescopu

    Digital Platforms in the Global South: Foundations and Research Agenda

    Get PDF
    Digital platforms have become integral to many of the everyday activities that people across the globe encounter in areas like transportation, commerce and social interactions. Research on the topic has largely concentrated on the general functioning of these platforms in terms of platform governance, business strategies and consumer behaviour. Despite their significant presence in the global South, the developmental implications of digital platforms remain largely understudied. In part, this is because digital platforms are a challenging research object due to their lack of conceptual definition, their spread across different regions and industries, and their intertwined nature with institutions, actors and digital technologies. The aim of this paper is therefore twofold: to provide a conceptual definition of digital platforms, and to identify research strands in international development contexts. To do so, we draw from digital platforms literature, differentiate between transaction and innovation platforms and expose their main characteristics. We the present four strands in the form of research questions, illustrated with concrete examples, that can assist to pursue relevant studies on digital platforms and international development in the future

    Recombinant mussel proximal thread matrix protein promotes osteoblast cell adhesion and proliferation

    Get PDF
    Background: von Willebrand factor (VWF) is a key load bearing domain for mamalian cell adhesion by binding various macromolecular ligands in extracellular matrix such as, collagens, elastin, and glycosaminoglycans. Interestingly, vWF like domains are also commonly found in load bearing systems of marine organisms such as in underwater adhesive of mussel and sea star, and nacre of marine abalone, and play a critical load bearing function. Recently, Proximal Thread Matrix Protein1 (PTMP1) in mussel composed of two vWF type A like domains has characterized and it is known to bind both mussel collagens and mammalian collagens. Results: Here, we cloned and mass produced a recombinant PTMP1 from E. coli system after switching all the minor codons to the major codons of E. coli. Recombinant PTMP1 has an ability to enhance mouse osteoblast cell adhesion, spreading, and cell proliferation. In addition, PTMP1 showed vWF-like properties as promoting collagen expression as well as binding to collagen type I, subsequently enhanced cell viability. Consequently, we found that recombinant PTMP1 acts as a vWF domain by mediating cell adhesion, spreading, proliferation, and formation of actin cytoskeleton. Conclusions: This study suggests that both mammalian cell adhesion and marine underwater adhesion exploits a strong vWF-collagen interaction for successful wet adhesion. In addition, vWF like domains containing proteins including PTMP1 have a great potential for tissue engineering and the development of biomedical adhesives as a component for extra-cellular matrix.open1151sciescopu

    Is EGFR expression altered following postoperative chemotherapy for colorectal adenocarcinoma?

    Get PDF
    BACKGROUND: There is immunohistochemical evidence to suggest that expression of epidermal growth factor receptor (EGFR) in primary colorectal adenocarcinoma predicts its expression in recurrent disease. This study investigates whether postoperative chemotherapy affects the degree of concordance between EGFR statuses of the two tumors. METHODS: Thirty-three patients were identified from the files of Sunnybrook Health Sciences Center from July 1994 to June 2005. All patients had resection of their primary tumors and their distant recurrences. Eighteen patients received postoperative chemotherapy, 3 of which also received postoperative radiation therapy. Representative primary and recurrent tumor sections were stained using mouse anti-EGFR antibodies and only membranous staining of malignant cells was recorded. Results were reported as negative (no staining), 1+ (positivity in <50% of cells) or 2+ (positivity in >50% of cells). RESULTS: EGFR immunostaining in the 15 patients, who received no postoperative chemotherapy, was decreased in 3 recurrences, remained the same in 10 and increased in 2. In the group of 18 patients who received postoperative chemotherapy, EGFR immunostaining was decreased in 6 recurrences, remained the same in 9 and increased in 3 (p = 0.6598). In patients who received postoperative chemotherapy, the odds ratio for a recurrence to show lower levels of EGFR immunostaining compared to its originally resected primary was 4.75 (CI = 0.94 – 26.73). CONCLUSION: These preliminary data suggest that recurrences following postoperative chemotherapy are likely to have lower levels of EGFR expression compared to cases who receive no chemotherapy. Although the difference of immunostaining profiles between the two groups was not statistically significant, this observation might impact the management of these patients by targeted biologic therapies and its practical implications need further validation in larger series

    Optimal synthesis and characterization of Ag nanofluids by electrical explosion of wires in liquids

    Get PDF
    Silver nanoparticles were produced by electrical explosion of wires in liquids with no additive. In this study, we optimized the fabrication method and examined the effects of manufacturing process parameters. Morphology and size of the Ag nanoparticles were determined using transmission electron microscopy and field-emission scanning electron microscopy. Size and zeta potential were analyzed using dynamic light scattering. A response optimization technique showed that optimal conditions were achieved when capacitance was 30 μF, wire length was 38 mm, liquid volume was 500 mL, and the liquid type was deionized water. The average Ag nanoparticle size in water was 118.9 nm and the zeta potential was -42.5 mV. The critical heat flux of the 0.001-vol.% Ag nanofluid was higher than pure water
    corecore