13 research outputs found

    Vicarious Group Trauma among British Jews

    Get PDF
    This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s11133-016-9337-4Given that literature on the intra- and inter-generational transmission of traumas is mainly based on secondary literature and focuses on the transmission of trauma memory in terms of the historical knowledge of group trauma, this article develops the theory of vicarious group trauma and tests this theory by exploring vicarious traumatization in the everyday lives of Jews in Britain through the methods of observation and in-depth interviewing. Vicarious group trauma is defined as a life or safety-threatening event or abuse that happened to some members of a social group but is felt by other members as their own experience because of their personal affiliation with the group. The article finds that the vicarious sensation of traumatic group experiences can create anxiety, elicit perceptions of threat and, by extension, hypervigilance among Jews. The findings demonstrate that group traumas of the past interpenetrate and interweave with members’ current lives and in this way can also become constitutive of their group identity. An institutional focus on threats to Jews can inform the construction and reinforcement of traumatization symptoms and accordingly vicarious group trauma. This article suggests an association between the level of involvement of group members in the collective’s social structure and the prominence of vicarious group trauma among them

    Examining in vivo tympanic membrane mobility using smart phone video-otoscopy and phase-based eulerian video magnification

    Get PDF
    The tympanic membrane (TM) is the bridging element between the pressure waves of sound in air and the ossicular chain. It allows for sound to be conducted into the inner ear, achieving the human sense of hearing. Otitis media with effusion (OME, commonly referred to as ‘glue ear’) is a typical condition in infants that prevents the vibration of the TM and causes conductive hearing loss, this can lead to stunting early stage development if undiagnosed. Furthermore, OME is hard to identify in this age group; as they cannot respond to typical audiometry tests. Tympanometry allows for the mobility of the TM to be examined without patient response, but requires expensive apparatus and specialist training. By combining a smartphone equipped with a 240 frames per second video recording capability with an otoscopic clip-on accessory, this paper presents a novel application of Eulerian Video Magnification (EVM) to video-otology, that could provide assistance in diagnosing OME. We present preliminary results showing a spatio-temporal slice taken from an exaggerated video visualization of the TM being excited in vivo on a healthy ear. Our preliminary results demonstrate the potential for using such an approach for diagnosing OME under visual inspection as alternative to tympanometry, which could be used remotely and hence help diagnosis in a wider population pool

    Endoscopic depth measurement and super-spectral-resolution imaging

    Get PDF
    Intra-operative measurements of tissue shape and multi/hyperspectral information have the potential to provide surgical guidance and decision making support. We report an optical probe based system to combine sparse hyperspectral measurements and spectrally-encoded structured lighting (SL) for surface measurements. The system provides informative signals for navigation with a surgical interface. By rapidly switching between SL and white light (WL) modes, SL information is combined with structure-from-motion (SfM) from white light images, based on SURF feature detection and Lucas-Kanade (LK) optical flow to provide quasi-dense surface shape reconstruction with known scale in real-time. Furthermore, “super-spectral-resolution” was realized, whereby the RGB images and sparse hyperspectral data were integrated to recover dense pixel-level hyperspectral stacks, by using convolutional neural networks to upscale the wavelength dimension. Validation and demonstration of this system is reported on ex vivo/in vivo animal/human experiments

    Dual-modality endoscopic probe for tissue surface shape reconstruction and hyperspectral imaging enabled by deep neural networks.

    No full text
    Surgical guidance and decision making could be improved with accurate and real-time measurement of intra-operative data including shape and spectral information of the tissue surface. In this work, a dual-modality endoscopic system has been proposed to enable tissue surface shape reconstruction and hyperspectral imaging (HSI). This system centers around a probe comprised of an incoherent fiber bundle, whose fiber arrangement is different at the two ends, and miniature imaging optics. For 3D reconstruction with structured light (SL), a light pattern formed of randomly distributed spots with different colors is projected onto the tissue surface, creating artificial texture. Pattern decoding with a Convolutional Neural Network (CNN) model and a customized feature descriptor enables real-time 3D surface reconstruction at approximately 12 frames per second (FPS). In HSI mode, spatially sparse hyperspectral signals from the tissue surface can be captured with a slit hyperspectral imager in a single snapshot. A CNN based super-resolution model, namely "super-spectral-resolution" network (SSRNet), has also been developed to estimate pixel-level dense hypercubes from the endoscope cameras standard RGB images and the sparse hyperspectral signals, at approximately 2 FPS. The probe, with a 2.1 mm diameter, enables the system to be used with endoscope working channels. Furthermore, since data acquisition in both modes can be accomplished in one snapshot, operation of this system in clinical applications is minimally affected by tissue surface movement and deformation. The whole apparatus has been validated on phantoms and tissue (ex vivo and in vivo), while initial measurements on patients during laryngeal surgery show its potential in real-world clinical applications

    Corrigendum to Dual-modality endoscopic probe for tissue surface shape reconstruction and hyperspectral imaging enabled by deep neural networks [Medical Image Analysis 48 (2018) 162-176/2018.06.004].

    No full text
    The first version of this article neglected to mention that this work was additionally supported by ERC award 637960. This has now been corrected online. The authors would like to apologise for any inconvenience caused

    Dual-modality endoscopic probe for tissue surface shape reconstruction and hyperspectral imaging enabled by deep neural networks

    No full text
    Surgical guidance and decision making could be improved with accurate and real-time measurement of intra-operative data including shape and spectral information of the tissue surface. In this work, a dual-modality endoscopic system has been proposed to enable tissue surface shape reconstruction and hyperspectral imaging (HSI). This system centers around a probe comprised of an incoherent fiber bundle, whose fiber arrangement is different at the two ends, and miniature imaging optics. For 3D reconstruction with structured light (SL), a light pattern formed of randomly distributed spots with different colors is projected onto the tissue surface, creating artificial texture. Pattern decoding with a Convolutional Neural Network (CNN) model and a customized feature descriptor enables real-time 3D surface reconstruction at approximately 12 frames per second (FPS). In HSI mode, spatially sparse hyperspectral signals from the tissue surface can be captured with a slit hyperspectral imager in a single snapshot. A CNN based super-resolution model, namely “super-spectral-resolution” network (SSRNet), has also been developed to estimate pixel-level dense hypercubes from the endoscope cameras standard RGB images and the sparse hyperspectral signals, at approximately 2 FPS. The probe, with a 2.1 mm diameter, enables the system to be used with endoscope working channels. Furthermore, since data acquisition in both modes can be accomplished in one snapshot, operation of this system in clinical applications is minimally affected by tissue surface movement and deformation. The whole apparatus has been validated on phantoms and tissue (ex vivo and in vivo), while initial measurements on patients during laryngeal surgery show its potential in real-world clinical applications
    corecore