47 research outputs found

    Second-opinion stress tele-echocardiography for the Adonhers (Aged donor heart rescue by stress echo) project

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To resolve the current shortage of donor hearts, we established the Adonhers protocol. An upward shift of the donor age cut-off limit (from the present 55 to 65 years) is acceptable if a stress echo screening on the candidate donor heart is normal. This study aimed to verify feasibility of a "second opinion" of digitally transferred images of stress echo results to minimize technical variability in selection of aged donor hearts for heart transplant.</p> <p>Methods</p> <p>The informatics infrastructure was created for a core lab reading with a second opinion from the Pisa stress echo lab. To test the system, simulation standard stress echo cineloops were sent digitally from 5 peripheral labs to the central core lab.</p> <p>Starting January 2009, real marginal donor stress echos were sent via internet to the central core echo lab, Pisa, for a second opinion before heart transplant.</p> <p>Results</p> <p>In the simulation protocol, 30 dipyridamole stress echocardiograms were sent from the five peripheral echo labs to the central core lab in Pisa. Both the echo images and reports were correctly uploaded in the web system and sent to the core echo lab; the second opinion evaluation was obtained in all cases (100% feasibility). In the transplant protocol, eight donor cases were sent to the Pisa core lab for the second opinion protocol, and six of them were transplanted in marginal recipients.</p> <p>Conclusions</p> <p>Second-Opinion Stress Tele-Echocardiography can effectively be performed in a network aimed to safely expand the heart donor pool for heart transplant.</p

    On the perils of ignoring evolution in networks

    Get PDF
    Here, we reply to the stimulating comments from Sagoff [1] and Rossberg [2] on Segar et al. [3]

    The role of evolution in shaping ecological networks

    No full text
    The structure of ecological networks reflects the evolutionary history of their biotic components, and their dynamics are strongly driven by ecoevolutionary processes. Here, we present an appraisal of recent relevant research, in which the pervasive role of evolution within ecological networks is manifest. Although evolutionary processes are most evident at macroevolutionary scales, they are also important drivers of local network structure and dynamics. We propose components of a blueprint for further research, emphasising process-based models, experimental evolution, and phenotypic variation, across a range of distinct spatial and temporal scales. Evolutionary dimensions are required to advance our understanding of foundational properties of community assembly and to enhance our capability of predicting how networks will respond to impending changes

    The role of evolution in shaping ecological networks

    No full text
    The structure of ecological networks reflects the evolutionary history of their biotic components, and their dynamics are strongly driven by ecoevolutionary processes. Here, we present an appraisal of recent relevant research, in which the pervasive role of evolution within ecological networks is manifest. Although evolutionary processes are most evident at macroevolutionary scales, they are also important drivers of local network structure and dynamics. We propose components of a blueprint for further research, emphasising process-based models, experimental evolution, and phenotypic variation, across a range of distinct spatial and temporal scales. Evolutionary dimensions are required to advance our understanding of foundational properties of community assembly and to enhance our capability of predicting how networks will respond to impending changes

    The role of evolution in shaping ecological networks

    No full text
    The structure of ecological networks reflects the evolutionary history of their biotic components, and their dynamics are strongly driven by ecoevolutionary processes. Here, we present an appraisal of recent relevant research, in which the pervasive role of evolution within ecological networks is manifest. Although evolutionary processes are most evident at macroevolutionary scales, they are also important drivers of local network structure and dynamics. We propose components of a blueprint for further research, emphasising process-based models, experimental evolution, and phenotypic variation, across a range of distinct spatial and temporal scales. Evolutionary dimensions are required to advance our understanding of foundational properties of community assembly and to enhance our capability of predicting how networks will respond to impending changes

    The role of evolution in shaping ecological networks

    No full text
    The structure of ecological networks reflects the evolutionary history of their biotic components, and their dynamics are strongly driven by ecoevolutionary processes. Here, we present an appraisal of recent relevant research, in which the pervasive role of evolution within ecological networks is manifest. Although evolutionary processes are most evident at macroevolutionary scales, they are also important drivers of local network structure and dynamics. We propose components of a blueprint for further research, emphasising process-based models, experimental evolution, and phenotypic variation, across a range of distinct spatial and temporal scales. Evolutionary dimensions are required to advance our understanding of foundational properties of community assembly and to enhance our capability of predicting how networks will respond to impending changes
    corecore