335 research outputs found

    Recombinant mussel proximal thread matrix protein promotes osteoblast cell adhesion and proliferation

    Get PDF
    Background: von Willebrand factor (VWF) is a key load bearing domain for mamalian cell adhesion by binding various macromolecular ligands in extracellular matrix such as, collagens, elastin, and glycosaminoglycans. Interestingly, vWF like domains are also commonly found in load bearing systems of marine organisms such as in underwater adhesive of mussel and sea star, and nacre of marine abalone, and play a critical load bearing function. Recently, Proximal Thread Matrix Protein1 (PTMP1) in mussel composed of two vWF type A like domains has characterized and it is known to bind both mussel collagens and mammalian collagens. Results: Here, we cloned and mass produced a recombinant PTMP1 from E. coli system after switching all the minor codons to the major codons of E. coli. Recombinant PTMP1 has an ability to enhance mouse osteoblast cell adhesion, spreading, and cell proliferation. In addition, PTMP1 showed vWF-like properties as promoting collagen expression as well as binding to collagen type I, subsequently enhanced cell viability. Consequently, we found that recombinant PTMP1 acts as a vWF domain by mediating cell adhesion, spreading, proliferation, and formation of actin cytoskeleton. Conclusions: This study suggests that both mammalian cell adhesion and marine underwater adhesion exploits a strong vWF-collagen interaction for successful wet adhesion. In addition, vWF like domains containing proteins including PTMP1 have a great potential for tissue engineering and the development of biomedical adhesives as a component for extra-cellular matrix.open1151sciescopu

    Serial detection of circulating tumour cells by reverse transcriptase-polymerase chain reaction assays is a marker for poor outcome in patients with malignant melanoma

    Get PDF
    BACKGROUND: Detection of circulating malignant cells (CMCs) through a reverse transcriptase-polymerase chain reaction (RT-PCR) assay seems to be a demonstration of systemic disease. We here evaluated the prognostic role of RT-PCR assays in serially-taken peripheral blood samples from patients with malignant melanoma (MM). METHODS: One hundred forty-nine melanoma patients with disease stage ranging from I to III were consecutively collected in 1997. A multi-marker RT-PCR assay was used on peripheral blood samples obtained at time of diagnosis and every 6 months during the first two years of follow-up (total: 5 samples). Univariate and multivariate analyses were performed after 83 months of median follow-up. RESULTS: Detection of at least one circulating mRNA marker was considered a signal of the presence of CMC (referred to as PCR-positive assay). A significant correlation was found between the rate of recurrences and the increasing number of PCR-positive assays (P = 0.007). Presence of CMC in a high number (≥2) of analysed blood samples was significantly correlated with a poor clinical outcome (disease-free survival: P = 0.019; overall survival: P = 0.034). Multivariate analysis revealed that presence of a PCR-positive status does play a role as independent prognostic factors for overall survival in melanoma patients, adding precision to the predictive power of the disease stage. CONCLUSION: Our findings indicated that serial RT-PCR assay may identify a high risk subset of melanoma patients with occult cancer cells constantly detected in blood circulation. Prolonged presence of CMCs seems to act as a surrogate marker of disease progression or a sign of more aggressive disease

    Involvement of Cox-2 in the metastatic potential of chemotherapy-resistant breast cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A major problem with the use of current chemotherapy regimens for several cancers, including breast cancer, is development of intrinsic or acquired drug resistance, which results in disease recurrence and metastasis. However, the mechanisms underlying this drug resistance are unknown. To study the molecular mechanisms underlying the invasive and metastatic activities of drug-resistant cancer cells, we generated a doxorubicin-resistant MCF-7 breast cancer cell line (MCF-7/DOX).</p> <p>Methods</p> <p>We used MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays, flow cytometry assays, DNA fragmentation assays, Western blot analysis, cell invasion assays, small interfering RNA (siRNA) transfection, reverse transcription-polymerase chain reaction, experimental lung metastasis models, and gelatin and fibrinogen/plasminogen zymography to study the molecular mechanism of metastatic activities in MCF-7/DOX cells.</p> <p>Results</p> <p>We found that MCF-7/DOX acquired invasive activities. In addition, Western blot analysis showed increased expression of epidermal growth factor receptor (EGFR) and Cox-2 in MCF-7/DOX cells. Inhibition of Cox-2, phosphoinositide 3-kinase (PI3K)/Akt, or mitogen-activated protein kinase (MAPK) pathways effectively inhibited the invasive activities of MCF-7/DOX cells. Gelatin and fibrinogen/plasminogen zymography analysis showed that the enzymatic activities of matrix metalloproteinase-2 (MMP-2), MMP-9, and urokinase-type plasminogen activator were markedly higher in MCF-7/DOX cells than in the MCF-7 cells. <it>In vitro </it>invasion assays and mouse models of lung metastasis demonstrated that MCF-7/DOX cells acquired invasive abilities. Using siRNAs and agonists specific for prostaglandin E (EP) receptors, we found that EP1 and EP3 played important roles in the invasiveness of MCF-7/DOX cells.</p> <p>Conclusions</p> <p>We found that the invasive activity of MCF-7/DOX cells is mediated by Cox-2, which is induced by the EGFR-activated PI3K/Akt and MAPK pathways. In addition, EP1 and EP3 are important in the Cox-2-induced invasion of MCF-7/DOX cells. Therefore, not only Cox-2 but also EP1 and EP3 could be important targets for chemosensitization and inhibition of metastasis in breast cancers that are resistant to chemotherapy.</p

    Paeonol Oxime Inhibits bFGF-Induced Angiogenesis and Reduces VEGF Levels in Fibrosarcoma Cells

    Get PDF
    Background: We previously reported the anti-angiogenic activity of paeonol isolated from Moutan Cortex. In the present study, we investigated the negative effect of paeonol oxime (PO, a paeonol derivative) on basic fibroblast growth factor (bFGF)-mediated angiogenesis in human umbilical vein endothelial cells (HUVECs) (including tumor angiogenesis) and pro-survival activity in HT-1080 fibrosarcoma cell line. Methodology/Principal Findings: We showed that PO (IC50  = 17.3 µg/ml) significantly inhibited bFGF-induced cell proliferation, which was achieved with higher concentrations of paeonol (IC50 over 200 µg). The treatment with PO blocked bFGF-stimulated migration and in vitro capillary differentiation (tube formation) in a dose-dependent manner. Furthermore, PO was able to disrupt neovascularization in vivo. Interestingly, PO (25 µg/ml) decreased the cell viability of HT-1080 fibrosarcoma cells but not that of HUVECs. The treatment with PO at 12.5 µg/ml reduced the levels of phosphorylated AKT and VEGF expression (intracellular and extracelluar) in HT-1080 cells. Consistently, immunefluorescence imaging analysis revealed that PO treatment attenuated AKT phosphorylation in HT-1080 cells. Conclusions/Significance: Taken together, these results suggest that PO inhibits bFGF-induced angiogenesis in HUVECs and decreased the levels of PI3K, phospho-AKT and VEGF in HT-1080 cells

    Melanoma-inhibiting activity (MIA) mRNA is not exclusively transcribed in melanoma cells: low levels of MIA mRNA are present in various cell types and in peripheral blood

    Get PDF
    The detection of minimal amounts of melanoma cells by tyrosinase reverse transcription polymerase chain reaction (RT-PCR) is seriously hampered by false negative reports in blood of melanoma patients with disseminated melanoma. Therefore, additional assays which make use of multiple melanoma markers are needed. It has been shown that introduction of multiple markers increases the sensitivity of detection. Melanoma inhibitory activity (MIA) is one such melanoma-specific candidate gene. To test the specificity of MIA PCR, we performed 30 and 60 cycles of PCR with two different sets of MIA specific primers on 19 melanoma and 16 non-melanoma cell lines. MIA mRNA was detected in 16 out of 19 melanoma cell lines and in seven out of 16 non-melanoma cell lines after 30 cycles of PCR. However, MIA mRNA could be detected in all cell lines after 60 cycles of PCR. Also, in 14 out of 14 blood samples of melanoma patients, five out of six blood samples of non-melanoma patients and in seven out of seven blood samples of healthy volunteers, MIA mRNA was detected after 60 cycles of PCR, whereas no MIA PCR product could be detected in any of the blood samples after 30 cycles of PCR. We conclude that low levels of MIA transcripts are present in various normal and neoplastic cell types. Therefore, MIA is not a suitable marker gene to facilitate the detection of minimal amounts of melanoma cells in blood or in target organs of the metastatic process. © 1999 Cancer Research Campaig

    Tyrosinase expression in the peripheral blood of stage III melanoma patients is associated with a poor prognosis: a clinical follow-up study of 110 patients

    Get PDF
    The aim of this study is to define the relationship between the tyrosinase expression in the peripheral blood and the clinical course of the disease in stage III disease-free melanoma patients after radical lymph node dissection. RT-PCR techniques were used to identify tyrosinase mRNA in 110 patients; a total of 542 blood samples were investigated. In all, 54 patients (49%) showed at least one positive result; 13 patients (11.8%) showed baseline positive results: six became negative thereafter, whereas seven showed follow-up positive results until disease progression occurred. One or more positive determinations were found during follow-up in 41 patients with negative baseline tyrosinase. No correlation was found between baseline results and the relapse rate or disease-free survival (DFS), whereas a significant correlation was found between positive tyrosinase results and disease recurrence during follow-up. In fact, 72.9% of positive patients relapsed, but only 19.3% of negative cases did so. The median interval between the positive results and the clinical demonstration of the relapse was 1.9 months (range 1-6.6). Disease-free survival multivariate analysis selected, as independent variables, Breslow thickness (P=0.05), lymph node involvement according to the AJCC classification (P=0.05) and tyrosinase expression (P=0.0001). In conclusion, RT-PCR tyrosinase mRNA expression is a reliable and reproducible marker associated with a high risk of melanoma progression and we encourage its clinical use in routine follow-up
    corecore