18 research outputs found

    Advocacy at the Eighth World Congress of Pediatric Cardiology and Cardiac Surgery

    Get PDF
    The Eighth World Congress of Pediatric Cardiology and Cardiac Surgery (WCPCCS) will be held in Washington DC, USA, from Saturday, 26 August, 2023 to Friday, 1 September, 2023, inclusive. The Eighth World Congress of Pediatric Cardiology and Cardiac Surgery will be the largest and most comprehensive scientific meeting dedicated to paediatric and congenital cardiac care ever held. At the time of the writing of this manuscript, The Eighth World Congress of Pediatric Cardiology and Cardiac Surgery has 5,037 registered attendees (and rising) from 117 countries, a truly diverse and international faculty of over 925 individuals from 89 countries, over 2,000 individual abstracts and poster presenters from 101 countries, and a Best Abstract Competition featuring 153 oral abstracts from 34 countries. For information about the Eighth World Congress of Pediatric Cardiology and Cardiac Surgery, please visit the following website: [www.WCPCCS2023.org]. The purpose of this manuscript is to review the activities related to global health and advocacy that will occur at the Eighth World Congress of Pediatric Cardiology and Cardiac Surgery. Acknowledging the need for urgent change, we wanted to take the opportunity to bring a common voice to the global community and issue the Washington DC WCPCCS Call to Action on Addressing the Global Burden of Pediatric and Congenital Heart Diseases. A copy of this Washington DC WCPCCS Call to Action is provided in the Appendix of this manuscript. This Washington DC WCPCCS Call to Action is an initiative aimed at increasing awareness of the global burden, promoting the development of sustainable care systems, and improving access to high quality and equitable healthcare for children with heart disease as well as adults with congenital heart disease worldwide

    Dark energy survey year 3 results: Galaxy sample for BAO measurement

    Get PDF
    In this paper, we present and validate the galaxy sample used for the analysis of the baryon acoustic oscillation (BAO) signal in the Dark Energy Survey (DES) Y3 data. The definition is based on a colour and redshift-dependent magnitude cut optimized to select galaxies at redshifts higher than 0.5, while ensuring a high-quality determination. The sample covers ~4100 deg2 to a depth of i = 22.3 (AB) at 10s. It contains 7031 993 galaxies in the redshift range from z = 0.6 to 1.1, with a mean effective redshift of 0.835. Redshifts are estimated with the machine learning algorithm DNF, and are validated using the VIPERS PDR2 sample. We find a mean redshift bias of zbias~0.01 and a mean uncertainty, in units of 1 + z, of σ68~0.03. We evaluate the galaxy population of the sample, showing it is mostly built upon Elliptical to Sbc types. Furthermore, we find a low level of stellar contamination of ≤ 4 per cent. We present the method used to mitigate the effect of spurious clustering coming from observing conditions and other large-scale systematics.We apply it to the BAO sample and calculate weights that are used to get a robust estimate of the galaxy clustering signal. This paper is one of a series dedicated to the analysis of the BAO signal in DES Y3. In the companion papers, we present the galaxy mock catalogues used to calibrate the analysis and the angular diameter distance constraints obtained through the fitting to the BAO scale
    corecore