2 research outputs found

    Immune responses of IL-5 transgenic mice to parasites and aeroallergens

    Get PDF
    Eosinophils have long been thought to be effectors of immunity to helminths but have also been implicated in the pathogenesis of asthma. Patterns of cytokine production in the host may influence the pathogenesis of these diseases by regulating the activities of eosinophils and other components of the immune response. Mice which constitutively over-express IL-5 have profound and life-long eosinophilia in a restricted number of tissues. Although eosinophils from IL-5 transgenics are functionally competent for a number of parameters considered to be important in inflammation, untreated animals are overtly normal and free of disease. In addition, the responses of these animals when exposed to aeroallergens and helminths present a number of apparent paradoxes. Eosinophil accumulation in tissues adjacent to major airways is rapid and extensive in transgenics exposed to the aeroallergen, but even after treatment with antigen over many months these mice show no evidence of respiratory distress or pathology. Helminth-infected IL-5 transgenics and their non-transgenic littermates develop similar inflammatory responses at mucosal sites and are comparable for a number of T cell and antibody responses, but they differ considerably in their ability to clear some parasite species. The life-cycle of Nippostrongylus brasiliensis is significantly inhibited in IL-5 transgenics, but that of Toxocara canis is not. Our results also suggest that eosinophilia and/or over-expression of IL-5 may actually impair host resistance to Schistosoma mansoni and Trichinella spiralis. The pathogenesis of diseases in which eosinophils are involved may therefore be more complex than previously thought

    Mixed messages in iron oxide-copper-gold systems of the Cloncurry district, Australia: insights from PIXE analysis of halogens and copper in fluid inclusions

    No full text
    Proterozoic rocks of the Cloncurry district in NW Queensland, Australia, are host to giant (tens to hundreds of square kilometers) hydrothermal systems that include (1) barren regional sodic–calcic alteration, (2) granite-hosted hydrothermal complexes with magmatic–hydrothermal transition features, and (3) iron oxide–copper–gold (IOCG) deposits. Fluid inclusion microthermometry and proton-induced X-ray emission (PIXE) show that IOCG deposits and the granite-hosted hydrothermal complexes contain abundant high temperature, ultrasaline, complex multisolid (type 1) inclusions that are less common in the regional sodic–calcic alteration. The latter is characterized by lower salinity three-phase halite-bearing (type 2) and two-phase (type 3) aqueous inclusions. Copper contents of the type 1 inclusions (>300 ppm) is higher than in type 2 and 3 inclusions (<300 ppm), and the highest copper concentrations (>1,000 ppm) are found both in the granite-hosted systems and in inclusions with Br/Cl ratios that are consistent with a magmatic source. The Br/Cl ratios of the inclusions with lower Cu contents are consistent with an evaporite-related origin. Wide ranges in salinity and homogenization temperatures for fluid inclusions in IOCG deposits and evidence for multiple fluid sources, as suggested by halogen ratios, indicate fluid mixing as an important process in IOCG genesis. The data support both leaching of Cu by voluminous nonmagmatic fluids from crustal rocks, as well as the direct exsolution of Cu-rich fluids from magmas. However, larger IOCG deposits may form from magmatic-derived fluids based on their higher Cu content
    corecore