3,124 research outputs found

    Penecontemporaneous partial disaggregationand/or resedimentation during the formation and deposition of subglacial till

    Get PDF
    Glacier ice has been always considered to be the geologic agent that forms and deposits till. However, the reality is more complex: meltwater and gravity participate to various degrees at the formation, deposition and penecontemporaneous redeposition of till, even though the glacier is the principal agent and thedeposition of till takes place in contact or near-contact with glacier ice. Boulton's (1980) and Lawson's (1981) cntena for the differentiation of "tills" from "nontills" are tested here, by using mainly their own data on glacial sedimentation and  penecontemporaneous resedimentation at Breidamerkurjokull, Iceland, and Matanuska Glacier, Alaska, but re-interpreting some of their conclusions or pointing out some discrepancies in their own conclusions. A strict adherence to some of Boulton's (1980) and Lawson's (1981) critetia would not permit calling most of Matanuska Glacier's melt-out tills, and the Breidamerkurjokull, lodgement till, particularly its dilated top portion, a true till. However, they may be considered tills, if the broad definition of: "Till is a sediment that has been transported and subsequently deposited by or from glacier ice, with little or no sorting by water" is applied instead

    Lake Arkona-Whittlesey and Post-Warren Radiocarbon Dates from "Ridgetown Island" in Southwestern Ontario

    Get PDF
    Author Institution: Department of Geology, University of Western OntarioThree radiocarbon dates from raised beaches along the "Ridgetown Island" support the age assignment of 13,000 years B.P. for the beginning of Lake Whittlesey in Ohio, and the termination of Lake Warren before 12,000 years B.P., as concluded from post-Warren data in Ontario

    Penecontemporaneous partial disaggregationand/or resedimentation during the formation and deposition of subglacial till

    Get PDF
    Glacier ice has been always considered to be the geologic agent that forms and deposits till. However, the reality is more complex: meltwater and gravity participate to various degrees at the formation, deposition and penecontemporaneous redeposition of till, even though the glacier is the principal agent and thedeposition of till takes place in contact or near-contact with glacier ice. Boulton's (1980) and Lawson's (1981) cntena for the differentiation of "tills" from "nontills" are tested here, by using mainly their own data on glacial sedimentation and  penecontemporaneous resedimentation at Breidamerkurjokull, Iceland, and Matanuska Glacier, Alaska, but re-interpreting some of their conclusions or pointing out some discrepancies in their own conclusions. A strict adherence to some of Boulton's (1980) and Lawson's (1981) critetia would not permit calling most of Matanuska Glacier's melt-out tills, and the Breidamerkurjokull, lodgement till, particularly its dilated top portion, a true till. However, they may be considered tills, if the broad definition of: "Till is a sediment that has been transported and subsequently deposited by or from glacier ice, with little or no sorting by water" is applied instead

    Subduction metamorphism of serpentinite‐hosted carbonates beyond antigorite-serpentinite dehydration (Nevado‐Filábride Complex, Spain)

    Get PDF
    I. Martínez Segura and M. J. Román Alpiste are thanked for their kind assistance during sample preparation and SEM operation, and M. T. Gómez‐Pugnaire and A. Jabaloy for early work on Almirez ophicarbonates. We are grateful to the Sierra Nevada National Park for providing permits for fieldwork and sampling at the Almirez massif. We further acknowledge the editorial handling by D. Whitney and D. Robinson and the reviews of M. Galvez and T. Pettke, whose comments and constructive criticism helped to improve the manuscript. We acknowledge funding from the European Union FP7 Marie‐Curie Initial Training Network ABYSS under REA Grant Agreement no. 608001 in the framework of M.D.M.'s PhD project, the Spanish ‘Agencia Estatal de Investigación’ (AEI) grants no. CGL2016‐75224‐R to V.L.S.‐V and CGL2016‐81085‐R to C.J.G and C.M and grant no. PCIN‐2015‐053 to C.J.G. The ‘Junta de Andalucía’ is also thanked for funding under grants no. RNM‐131, RNM‐374 and P12‐RNM‐3141. C.M. thanks MINECO for financing a Ramón y Cajal fellowship no. RYC‐2012‐11314 and K.H. for a Juan de la Cierva Fellowship no. FPDI‐2013‐16253 and a research contract under grant no. CGL2016‐81085‐R. This work and the research infrastructure at the IACT have received (co)funding from the European Social Fund and the European Regional Development Fund.At sub‐arc depths, the release of carbon from subducting slab lithologies is mostly controlled by fluid released by devolatilization reactions such as dehydration of antigorite (Atg‐) serpentinite to prograde peridotite. Here we investigate carbonate–silicate rocks hosted in Atg‐serpentinite and prograde chlorite (Chl‐) harzburgite in the Milagrosa and Almirez ultramafic massifs of the palaeo‐subducted Nevado‐Filábride Complex (NFC, Betic Cordillera, S. Spain). These massifs provide a unique opportunity to study the stability of carbonate during subduction metamorphism at P–T conditions before and after the dehydration of Atg‐serpentinite in a warm subduction setting. In the Milagrosa massif, carbonate–silicate rocks occur as lenses of Ti‐clinohumite–diopside–calcite marbles, diopside–dolomite marbles and antigorite–diopside–dolomite rocks hosted in clinopyroxene‐bearing Atg‐serpentinite. In Almirez, carbonate–silicate rocks are hosted in Chl‐harzburgite and show a high‐grade assemblage composed of olivine, Ti‐clinohumite, diopside, chlorite, dolomite, calcite, Cr‐ bearing magnetite, pentlandite and rare aragonite inclusions. These NFC carbonate–silicate rocks have variable CaO and CO2 contents at nearly constant Mg/ Si ratio and high Ni and Cr contents, indicating that their protoliths were variable mixtures of serpentine and Ca‐carbonate (i.e., ophicarbonates). Thermodynamic modelling shows that the carbonate–silicate rocks attained peak metamorphic conditions similar to those of their host serpentinite (Milagrosa massif; 550–600°C and 1.0–1.4 GPa) and Chl‐harzburgite (Almirez massif; 1.7–1.9 GPa and 680°C). Microstructures, mineral chemistry and phase relations indicate that the hybrid carbonate–silicate bulk rock compositions formed before prograde metamorphism, likely during seawater hydrothermal alteration, and subsequently underwent subduction metamorphism. In the CaO–MgO–SiO2 ternary, these processes resulted in a compositional variability of NFC serpentinite‐hosted carbonate–silicate rocks along the serpentine‐calcite mixing trend, similar to that observed in serpentinite‐hosted carbonate‐rocks in other palaeo‐subducted metamorphic terranes. Thermodynamic modelling using classical models of binary H2O–CO2 fluids shows that the compositional variability along this binary determines the temperature of the main devolatilization reactions, the fluid composition and the mineral assemblages of reaction products during prograde subduction metamorphism. Thermodynamic modelling considering electrolytic fluids reveals that H2O and molecular CO2 are the main fluid species and charged carbon‐bearing species occur only in minor amounts in equilibrium with carbonate–silicate rocks in warm subduction settings. Consequently, accounting for electrolytic fluids at these conditions slightly increases the solubility of carbon in the fluids compared with predictions by classical binary H2O–CO2 fluids, but does not affect the topology of phase relations in serpentinite‐hosted carbonate‐ rocks. Phase relations, mineral composition and assemblages of Milagrosa and Almirez (meta)‐serpentinite‐hosted carbonate–silicate rocks are consistent with local equilibrium between an infiltrating fluid and the bulk rock composition and indicate a limited role of infiltration‐driven decarbonation. Our study shows natural evidence for the preservation of carbonates in serpentinite‐hosted carbonate–silicate rocks beyond the Atg‐serpentinite breakdown at sub‐arc depths, demonstrating that carbon can be recycled into the deep mantle.Funding from the European Union FP7 Marie‐Curie Initial Training Network ABYSS under REA Grant Agreement no. 608001Spanish ‘Agencia Estatal de Investigación’ (AEI) grants no. CGL2016‐75224‐R to V.L.S.‐V and CGL2016‐81085‐R to C.J.G and C.M and grant no. PCIN‐2015‐053 to C.J.GJunta de Andalucía Funding under grants no. RNM‐131, RNM‐374 and P12‐RNM‐3141MINECO for financing a Ramón y Cajal fellowship no. RYC‐2012‐11314 and K.H. for a Juan de la Cierva Fellowship no. FPDI‐2013‐16253 and a research contract under grant no. CGL2016‐81085‐

    Observation of an Excited Bc+ State

    Get PDF
    Using pp collision data corresponding to an integrated luminosity of 8.5 fb-1 recorded by the LHCb experiment at center-of-mass energies of s=7, 8, and 13 TeV, the observation of an excited Bc+ state in the Bc+π+π- invariant-mass spectrum is reported. The observed peak has a mass of 6841.2±0.6(stat)±0.1(syst)±0.8(Bc+) MeV/c2, where the last uncertainty is due to the limited knowledge of the Bc+ mass. It is consistent with expectations of the Bc∗(2S31)+ state reconstructed without the low-energy photon from the Bc∗(1S31)+→Bc+Îł decay following Bc∗(2S31)+→Bc∗(1S31)+π+π-. A second state is seen with a global (local) statistical significance of 2.2σ (3.2σ) and a mass of 6872.1±1.3(stat)±0.1(syst)±0.8(Bc+) MeV/c2, and is consistent with the Bc(2S10)+ state. These mass measurements are the most precise to date

    Measurement of the Bs0→J/ψηB_{s}^{0} \rightarrow J/\psi \eta lifetime

    Get PDF
    Using a data set corresponding to an integrated luminosity of 3fb−13 fb^{-1}, collected by the LHCb experiment in pppp collisions at centre-of-mass energies of 7 and 8 TeV, the effective lifetime in the Bs0→J/ψηB^0_s \rightarrow J/\psi \eta decay mode, τeff\tau_{\textrm{eff}}, is measured to be τeff=1.479±0.034 (stat)±0.011 (syst)\tau_{\textrm{eff}} = 1.479 \pm 0.034~\textrm{(stat)} \pm 0.011 ~\textrm{(syst)} ps. Assuming CPCP conservation, τeff\tau_{\textrm{eff}} corresponds to the lifetime of the light Bs0B_s^0 mass eigenstate. This is the first measurement of the effective lifetime in this decay mode.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-017.htm

    Observation of two new Ξb−\Xi_b^- baryon resonances

    Get PDF
    Two structures are observed close to the kinematic threshold in the Ξb0π−\Xi_b^0 \pi^- mass spectrum in a sample of proton-proton collision data, corresponding to an integrated luminosity of 3.0 fb−1^{-1} recorded by the LHCb experiment. In the quark model, two baryonic resonances with quark content bdsbds are expected in this mass region: the spin-parity JP=12+J^P = \frac{1}{2}^+ and JP=32+J^P=\frac{3}{2}^+ states, denoted Ξbâ€Č−\Xi_b^{\prime -} and Ξb∗−\Xi_b^{*-}. Interpreting the structures as these resonances, we measure the mass differences and the width of the heavier state to be m(Ξbâ€Č−)−m(Ξb0)−m(π−)=3.653±0.018±0.006m(\Xi_b^{\prime -}) - m(\Xi_b^0) - m(\pi^{-}) = 3.653 \pm 0.018 \pm 0.006 MeV/c2/c^2, m(Ξb∗−)−m(Ξb0)−m(π−)=23.96±0.12±0.06m(\Xi_b^{*-}) - m(\Xi_b^0) - m(\pi^{-}) = 23.96 \pm 0.12 \pm 0.06 MeV/c2/c^2, Γ(Ξb∗−)=1.65±0.31±0.10\Gamma(\Xi_b^{*-}) = 1.65 \pm 0.31 \pm 0.10 MeV, where the first and second uncertainties are statistical and systematic, respectively. The width of the lighter state is consistent with zero, and we place an upper limit of Γ(Ξbâ€Č−)<0.08\Gamma(\Xi_b^{\prime -}) < 0.08 MeV at 95% confidence level. Relative production rates of these states are also reported.Comment: 17 pages, 2 figure
    • 

    corecore