4,870 research outputs found

    Contribution of street food to dietary intake of habitual urban consumers: a cross-sectional study in Kampala city, Uganda

    Get PDF
    Background: Street food has continued to be a popular food source in the urban settings of developing countries and is proving to be a vital urban dietary source. However, its dietary contribution among urban populations is yet to be comprehensively understood. Aim: To assess how street food contributes to the dietary intake of habitual street food consumers. Methods: We conducted a community-based cross-sectional study among habitual street food consumers in Kampala city. We defined habitual intake as consumption of a serving of any street food for ≄2 days/week regardless of the food group and number of times it was consumed in a particular day. Questionnaires were used to capture quantitative data on sociodemographic characteristics, anthropometry, 24-hour diet intake and 2-month street food consumption frequency. The NutriticsÂź diet analysis software version 4.3 and STATA version 13.0 were used for nutrient and statistical analyses respectively. Results: Street food contributed considerably to the daily intake of fat (49.1%), sodium (38.4%) and calcium (36.5%) and least towards the daily intake of vitamin A (11.3%). The majority of consumers opted for street food at breakfast (50%) whereas lunch and snacks featured the least for overall street food inclusion (all 20%). Overall, men demonstrated more dietary intake and inclusion at meals from street food than women. Conclusions: This study indicates a significant contribution of street food for urban consumers but men derive more benefit than women in terms of nutrient intake and inclusion of street food in meals

    Decuplet Baryon Structure from Lattice QCD

    Full text link
    The electromagnetic properties of the SU(3)-flavor baryon decuplet are examined within a lattice simulation of quenched QCD. Electric charge radii, magnetic moments, and magnetic radii are extracted from the E0 and M1 form factors. Preliminary results for the E2 and M3 moments are presented giving the first model independent insight to the shape of the quark distribution in the baryon ground state. As in our octet baryon analysis, the lattice results give evidence of spin-dependent forces and mass effects in the electromagnetic properties. The quark charge distribution radii indicate these effects act in opposing directions. Some baryon dependence of the effective quark magnetic moments is seen. However, this dependence in decuplet baryons is more subtle than that for octet baryons. Of particular interest are the lattice predictions for the magnetic moments of Ω−\Omega^- and Δ++\Delta^{++} for which new recent experimental measurements are available. The lattice prediction of the Δ++/p\Delta^{++}/p ratio appears larger than the experimental ratio, while the lattice prediction for the Ω−/p\Omega^-/p magnetic moment ratio is in good agreement with the experimental ratio.Comment: RevTeX manuscript, 34 pages plus 21 figures (available upon request

    Glueball matrix elements on anisotropic lattices

    Get PDF
    We describe a lattice calculation of the matrix elements relevant for glueball production in J/ψJ / \psi radiative decays. The techniques for such a calculation on anisotropic lattices with an improved action are outlined. We present preliminary results showing the efficacy of the computational method.Comment: 3 pages (LaTeX), 3 figures (PostScript), Presented at Lattice '9

    Baryon Octet to Decuplet Electromagnetic Transitions

    Full text link
    The electromagnetic transition moments of the SU(3)SU(3)-flavor baryon octet to decuplet are examined within a lattice simulation of quenched QCD. The magnetic transition moment for the N  γ→ΔN \; \gamma \to \Delta channel is found to be in agreement with recent experimental analyses. The lattice results indicate ÎŒpΔ/ÎŒp=0.88(15)\mu_{p \Delta} / \mu_p = 0.88(15). In terms of the Particle Data Group convention, fM1=0.231(41)f_{M1} = 0.231(41) GeV−1/2{}^{-1/2} for p  γ→Δ+p \; \gamma \to \Delta^+ transitions. Lattice predictions for the hyperon M1M1 transition moments agree with those of a simple quark model. However the manner in which the quarks contribute to the transition moments in the lattice simulation is different from that anticipated by quark model calculations. The scalar quadrupole form factor exhibits a behavior consistent with previous multipole analyses. The E2/M1E2/M1 multipole transition moment ratios are also determined. The lattice results suggest REM≡−GE2/GM1=+3±8R_{EM} \equiv -{\cal G}_{E2}/{\cal G}_{M1} = +3\pm 8 \% for p  γ→Δ+p \; \gamma \to \Delta^+ transitions. Of particular interest are significant nonvanishing signals for the E2/M1E2/M1 ratio in Ξ−\Xi^- and Σ−\Sigma^- electromagnetic transitions.Comment: PostScript file, 37 pages including figures. U. MD PP #93-085, U. KY PP #UK/92-09, TRIUMF PP #TRI-PP-92-12

    L1551NE - Discovery of a Binary Companion

    Get PDF
    L1551NE is a very young (class 0 or I) low-mass protostar located close to the well-studied L1551 IRS5. We present here evidence, from 1.3mm continuum interferometric observations at ~1'' resolution, for a binary companion to L1551NE. The companion, whose 1.3mm flux density is ~1/3 that of the primary component, is located 1.43'' (~230 A.U. at 160pc) to the southeast. The millimeterwave emission from the primary component may have been just barely resolved, with deconvolved size ~0.82"x0.70" (~131x112 A.U.). The companion emission was unresolved (<100 A.U.). The pair is embedded within a flattened circum-binary envelope of size ~5.4'' x 2.3'' (~860 x 370 A.U.). The masses of the three components (i.e. from the cicumstellar material of the primary star and its companion, and the envelope) are approximately 0.044, 0.014 and 0.023 Mo respectively.Comment: 8 pages, 1 figur

    Nucleon Axial Form Factor from Lattice QCD

    Full text link
    Results for the isovector axial form factors of the proton from a lattice QCD calculation are presented for both point-split and local currents. They are obtained on a quenched 163×2416^{3} \times 24 lattice at ÎČ=6.0\beta= 6.0 with Wilson fermions for a range of quark masses from strange to charm. We determine the finite lattice renormalization for both the local and point-split currents of heavy quarks. Results extrapolated to the chiral limit show that the q2q^2 dependence of the axial form factor agrees reasonably well with experiment. The axial coupling constant gAg_A calculated for the local and the point-split currents is about 6\% and 12\% smaller than the experimental value respectively.Comment: 8 pages, 5 figures (included in part 2), UK/93-0

    On the Effect of Quantum Interaction Distance on Quantum Addition Circuits

    Full text link
    We investigate the theoretical limits of the effect of the quantum interaction distance on the speed of exact quantum addition circuits. For this study, we exploit graph embedding for quantum circuit analysis. We study a logical mapping of qubits and gates of any Ω(log⁥n)\Omega(\log n)-depth quantum adder circuit for two nn-qubit registers onto a practical architecture, which limits interaction distance to the nearest neighbors only and supports only one- and two-qubit logical gates. Unfortunately, on the chosen kk-dimensional practical architecture, we prove that the depth lower bound of any exact quantum addition circuits is no longer Ω(log⁥n)\Omega(\log {n}), but Ω(nk)\Omega(\sqrt[k]{n}). This result, the first application of graph embedding to quantum circuits and devices, provides a new tool for compiler development, emphasizes the impact of quantum computer architecture on performance, and acts as a cautionary note when evaluating the time performance of quantum algorithms.Comment: accepted for ACM Journal on Emerging Technologies in Computing System

    Effects of imperfections for Shor's factorization algorithm

    Full text link
    We study effects of imperfections induced by residual couplings between qubits on the accuracy of Shor's algorithm using numerical simulations of realistic quantum computations with up to 30 qubits. The factoring of numbers up to N=943 show that the width of peaks, which frequencies allow to determine the factors, grow exponentially with the number of qubits. However, the algorithm remains operational up to a critical coupling strength Ï”c\epsilon_c which drops only polynomially with log⁥2N\log_2 N. The numerical dependence of Ï”c\epsilon_c on log⁥2N\log_2 N is explained by analytical estimates that allows to obtain the scaling for functionality of Shor's algorithm on realistic quantum computers with a large number of qubits.Comment: 10 pages, 10 figures, 1 table. Added references and new data. Erratum added as appendix. 1 Figure and 1 Table added. Research is available at http://www.quantware.ups-tlse.fr
    • 

    corecore