3 research outputs found

    Estimation of Dislocation Density in Cold-Rolled Commercially Pure Titanium by Using Synchrotron Diffraction

    No full text
    Cold rolling (CR) leads to a heavy changes in the crystallographic texture and microstructure, especially crystal defects, such as dislocations, and stacking faults increase. The microstructure evolution in commercially pure titanium (cp-Ti) deformed by CR at the room temperature was determined by using the synchrotron peak profile analysis of full width at half maximum (FWHM). The computer program ANIZC has been used for the calculation of diffraction contrast factors of dislocations in elastically anisotropic hexagonal crystals. The dislocation density has a minimum value at 40 pct reduction. The increase of the dislocation density at higher deformation levels is caused by the nucleation of new generation of dislocations from the crystallite grain boundaries. The high-cycle fatigue strength (HCF) has a maximum value at 80 pct reduction and it has a minimum value at 40 pct reduction in the commercially pure titanium
    corecore