170 research outputs found

    Does Prehabilitation modify muscle mass in patients with rectal cancer undergoing neoadjuvant therapy?:A subanalysis from the REx Randomised Controlled Trial

    Get PDF
    Background: Patients with rectal cancer who present with sarcopenia (low muscle mass) are at significantly greater risk of postoperative complications and reduction in disease-free survival. We performed a subanalysis of a randomised controlled study [the REx trial; www.isrctn.com; 62859294] to assess the potential of prehabilitation to modify muscle mass in patients having neoadjuvant chemoradiotherapy (NACRT). Methods: Patients scheduled for NACRT, then potentially curative surgery (August 2014–March 2016) had baseline physical assessment and psoas muscle mass measurement (total psoas index using computed tomography-based measurements). Participants were randomised to either the intervention (13–17-week telephone-guided graduated walking programme) or control group (standard care). Follow-up testing was performed 1–2 weeks before surgery. Results: The 44 patients had a mean age of 66.8 years (SD 9.6) and were male (64%); white (98%); American Society of Anesthesiologists class 2 (66%); co-morbid (58%); overweight (72%) (body mass index ≥ 25 kg/m2). At baseline, 14% were sarcopenic. At follow-up, 13 (65%) of patients in the prehabilitation group had increased muscle mass versus 7 (35%) that experienced a decrease. Conversely, 16 (67%) controls experienced a decrease in muscle mass and 8 (33%) showed an increase. An adjusted linear regression model estimated a mean treatment difference in Total Psoas Index of 40.2mm2/m2 (95% CI − 3.4 to 83.7) between groups in change from baseline (p = 0.07). Conclusions: Prehabilitation improved muscle mass in patients with rectal cancer who had NACRT. These results need to be explored in a larger trial to determine if the poorer short- and long-term patient outcomes associated with low muscle mass can be minimised by prehabilitation

    Concerted Action of Two Formins in Gliding Motility and Host Cell Invasion by Toxoplasma gondii

    Get PDF
    The invasive forms of apicomplexan parasites share a conserved form of gliding motility that powers parasite migration across biological barriers, host cell invasion and egress from infected cells. Previous studies have established that the duration and direction of gliding motility are determined by actin polymerization; however, regulators of actin dynamics in apicomplexans remain poorly characterized. In the absence of a complete ARP2/3 complex, the formin homology 2 domain containing proteins and the accessory protein profilin are presumed to orchestrate actin polymerization during host cell invasion. Here, we have undertaken the biochemical and functional characterization of two Toxoplasma gondii formins and established that they act in concert as actin nucleators during invasion. The importance of TgFRM1 for parasite motility has been assessed by conditional gene disruption. The contribution of each formin individually and jointly was revealed by an approach based upon the expression of dominant mutants with modified FH2 domains impaired in actin binding but still able to dimerize with their respective endogenous formin. These mutated FH2 domains were fused to the ligand-controlled destabilization domain (DD-FKBP) to achieve conditional expression. This strategy proved unique in identifying the non-redundant and critical roles of both formins in invasion. These findings provide new insights into how controlled actin polymerization drives the directional movement required for productive penetration of parasites into host cells

    Unique Changes in Mitochondrial Genomes Associated with Reversions of S-Type Cytoplasmic Male Sterility in Maizemar

    Get PDF
    Cytoplasmic male sterility (CMS) in plants is usually associated with the expression of specific chimeric regions within rearranged mitochondrial genomes. Maize CMS-S plants express high amounts of a 1.6-kb mitochondrial RNA during microspore maturation, which is associated with the observed pollen abortion. This transcript carries two chimeric open reading frames, orf355 and orf77, both unique to CMS-S. CMS-S mitochondria also contain free linear DNA plasmids bearing terminal inverted repeats (TIRs). These TIRs recombine with TIR-homologous sequences that precede orf355/orf77 within the main mitochondrial genome to produce linear ends. Transcription of the 1.6-kb RNA is initiated from a promoter within the TIRs only when they are at linear ends. Reversions of CMS-S to fertility occur in certain nuclear backgrounds and are usually associated with loss of the S plasmids and/or the sterility-associated region. We describe an unusual set of independently recovered revertants from a single maternal lineage that retain both the S plasmids and an intact orf355/orf77 region but which do not produce the 1.6-kb RNA. A 7.3-kb inversion resulting from illegitmate recombination between 14-bp microrepeats has separated the genomic TIR sequences from the CMS-associated region. Although RNAs containing orf355/orf77 can still be detected in the revertants, they are not highly expressed during pollen development and they are no longer initiated from the TIR promoter at a protein-stabilized linear end. They appear instead to be co-transcribed with cytochrome oxidase subunit 2. The 7.3-kb inversion was not detected in CMS-S or in other fertile revertants. Therefore, this inversion appears to be a de novo mutation that has continued to sort out within a single maternal lineage, giving rise to fertile progeny in successive generations

    A Close Eye on the Eagle-Eyed Visual Acuity Hypothesis of Autism

    Get PDF
    Autism spectrum disorders (ASD) have been associated with sensory hypersensitivity. A recent study reported visual acuity (VA) in ASD in the region reported for birds of prey. The validity of the results was subsequently doubted. This study examined VA in 34 individuals with ASD, 16 with schizophrenia (SCH), and 26 typically developing (TYP). Participants with ASD did not show higher VA than those with SCH and TYP. There were no substantial correlations of VA with clinical severity in ASD or SCH. This study could not confirm the eagle-eyed acuity hypothesis of ASD, or find evidence for a connection of VA and clinical phenotypes. Research needs to further address the origins and circumstances associated with altered sensory or perceptual processing in ASD

    Formin homology 2 domains occur in multiple contexts in angiosperms

    Get PDF
    BACKGROUND: Involvement of conservative molecular modules and cellular mechanisms in the widely diversified processes of eukaryotic cell morphogenesis leads to the intriguing question: how do similar proteins contribute to dissimilar morphogenetic outputs. Formins (FH2 proteins) play a central part in the control of actin organization and dynamics, providing a good example of evolutionarily versatile use of a conserved protein domain in the context of a variety of lineage-specific structural and signalling interactions. RESULTS: In order to identify possible plant-specific sequence features within the FH2 protein family, we performed a detailed analysis of angiosperm formin-related sequences available in public databases, with particular focus on the complete Arabidopsis genome and the nearly finished rice genome sequence. This has led to revision of the current annotation of half of the 22 Arabidopsis formin-related genes. Comparative analysis of the two plant genomes revealed a good conservation of the previously described two subfamilies of plant formins (Class I and Class II), as well as several subfamilies within them that appear to predate the separation of monocot and dicot plants. Moreover, a number of plant Class II formins share an additional conserved domain, related to the protein phosphatase/tensin/auxilin fold. However, considerable inter-species variability sets limits to generalization of any functional conclusions reached on a single species such as Arabidopsis. CONCLUSIONS: The plant-specific domain context of the conserved FH2 domain, as well as plant-specific features of the domain itself, may reflect distinct functional requirements in plant cells. The variability of formin structures found in plants far exceeds that known from both fungi and metazoans, suggesting a possible contribution of FH2 proteins in the evolution of the plant type of multicellularity

    The Cell Adhesion Molecule “CAR” and Sialic Acid on Human Erythrocytes Influence Adenovirus In Vivo Biodistribution

    Get PDF
    Although it has been known for 50 years that adenoviruses (Ads) interact with erythrocytes ex vivo, the molecular and structural basis for this interaction, which has been serendipitously exploited for diagnostic tests, is unknown. In this study, we characterized the interaction between erythrocytes and unrelated Ad serotypes, human 5 (HAd5) and 37 (HAd37), and canine 2 (CAV-2). While these serotypes agglutinate human erythrocytes, they use different receptors, have different tropisms and/or infect different species. Using molecular, biochemical, structural and transgenic animal-based analyses, we found that the primary erythrocyte interaction domain for HAd37 is its sialic acid binding site, while CAV-2 binding depends on at least three factors: electrostatic interactions, sialic acid binding and, unexpectedly, binding to the coxsackievirus and adenovirus receptor (CAR) on human erythrocytes. We show that the presence of CAR on erythrocytes leads to prolonged in vivo blood half-life and significantly reduced liver infection when a CAR-tropic Ad is injected intravenously. This study provides i) a molecular and structural rationale for Ad–erythrocyte interactions, ii) a basis to improve vector-mediated gene transfer and iii) a mechanism that may explain the biodistribution and pathogenic inconsistencies found between human and animal models

    Unicircular structure of the Brassica hirta mitochondrial genome

    Full text link
    Restriction mapping studies reveal that the mitochondrial genome of white mustard ( Brassica hirta ) exists in the form of a single circular 208 kb chromosome. The B. hirta genome has only one copy of the two sequences which, in several related Brassica species, are duplicated and undergo intramolecular recombination. This first report of a plant mitochondrial DNA that does not exist in a multipartite structure indicates that high frequency intramolecular recombination is not an obligatory feature of plant mitochondrial genomes. Heterologous filter hybridizatios reveal that the mitochondrial genomes of B. hirta and B. campestris have diverged radically in sequence arrangement, as the result of approximately 10 large inversions. At the same time, however, the two genomes are similar in size, sequence content, and primary sequence.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46962/1/294_2004_Article_BF00384620.pd

    Patterns of mitochondrial DNA instability in Brassica campestris cultured cells

    Full text link
    We previously showed that the mitochondrial DNA (mtDNA) of a Brassica campestris callus culture had undergone extensive rearrangements (i.e. large inversions and a duplication) relative to DNA of the control plant [54]. In this study we observed that after continued growth, the mtDNA of this culture continues to change, with rearranged forms amplifying and diminishing to varying proportions. Strikingly similar changes were detected in the mtDNA profiles of a variety of other long- and short-term callus and cell suspension lines. However, the proportions of parental (‘unrearranged’) and novel (‘rearranged’) forms varied in different cultured cell mtDNAs. To address the source of this heterogeneity, we compared the mtDNA organization of 28 individual plants from the parental seed stock. With the exception of one plant containing high levels of a novel plasmid-like mtDNA molecule, no significant variation was detected among individual plants and therefore source plant variation is unlikely to have contributed to the diversity of mitochondrial genomes observed in cultured cells. The source of this culture-induced heterogeneity was also investigated in 16 clones derived from single protoplasts. A mixed population of unrearranged and rearranged mtDNA molecules was apprent in each protoclone, suggesting that the observed heterogeneity in various cultures might reflect the genomic composition of each individual cell; however, the induction of an intercellular heterogeneity subsequent to the protoplast isolation was not tested and therefore cannot be ruled out. The results of this study support our earlier model that the rapid structural alteration of B. campestris mtDNA in vitro results from preferential amplification and reassortment of minor pre-existing forms of the genome rather than de novo rearrangement. Infrequent recombination between short dispersed repeated elements is proposed as the underlying mechanism for the formation of these minor mtDNA molecules.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43428/1/11103_2004_Article_BF00017914.pd
    corecore