49 research outputs found

    Territory quality and territorial behavior in two sympatric species of hummingbirds

    Full text link
    Changes in territorial behavior of blackchinned hummingbirds ( Archilochus alexandri ) in response to experimental changes in territory quality were investigated using artificial feeders and simultaneous, pair-wise observations of owners. Some of the responses of A. alexandri were similar to those documented by a previous study of the Anna's hummingbird ( Calypte anna): A. alexandri defending rich territories spent more time on their territories, encountered a greater percentage of intruders, and chased more intruders than did A. alexandri defending poor territories. In contrast to C. anna, A. alexandri supplemented chases with energetically inexpensive threat vocalizations more extensively when territory quality was increased. This difference may be related to A. alexandri's more tenuous control of rich territories. When both species were observed on very poor territories, A. alexandri chased a greater percentage of intruders, consumed a greater proportion of available food, and obtained a greater net energy gain from their territories. When observed simultaneously on territories with ad lib food, both species defended highly exclusive territories but A. alexandri suffered higher intrusion pressure and spent more time and energy in defense. These interspecific differences in territorial behavior may facilitate sympatric coexistence of the two species through aggressive partitioning of flower patches according to productivity: the greater payoff received by C. anna on rich territories and A. alexandri on poor territories should favor a corresponding monopolization of rich areas by C. anna and poor areas by A. alexandri .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46878/1/265_2004_Article_BF00292181.pd

    Myoepithelial cells: good fences make good neighbors

    Get PDF
    The mammary gland consists of an extensively branched ductal network contained within a distinctive basement membrane and encompassed by a stromal compartment. During lactation, production of milk depends on the action of the two epithelial cell types that make up the ductal network: luminal cells, which secrete the milk components into the ductal lumen; and myoepithelial cells, which contract to aid in the ejection of milk. There is increasing evidence that the myoepithelial cells also play a key role in the organizational development of the mammary gland, and that the loss and/or change of myoepithelial cell function is a key step in the development of breast cancer. In this review we briefly address the characteristics of breast myoepithelial cells from human breast and mouse mammary gland, how they function in normal mammary gland development, and their recently appreciated role in tumor suppression

    Localisation of Annexin V and Annexin VI in Lactating Mammary Epithelial Cells

    No full text

    Demonstration of laminin, a basement membrane glycoprotein, in routinely processed formalin-fixed human tissues.

    Full text link
    Laminin was demonstrated by immunoperoxidase and immunofluorescence staining in sections of normal human tissues fixed in formalin and routinely processed in paraffin. Exposure of the sections to a solution of pepsin (Burns et al. (1980) Histochemistry 67:73-78) revealed the antigenicity of this basement membrane glycoprotein. Sections from paraffin blocks stored for years at room temperature could be stained with this procedure. Normal human tissues, developing fetal tissues and tumors could be stained with this method. The staining patterns were similar to those seen in unfixed frozen sections. It thus appears that basement membrane components can be detected by immunohistological means from routinely processed histological samples, once the sections are pretreated with proteases. Staining for laminin could be used in embryonic studies and in histopathology to study the relation of cells to basement membranes and for the visualization of normal and abnormal vascularization
    corecore