32 research outputs found

    Hard Superconductivity of a Soft Metal in the Quantum Regime

    Full text link
    Superconductivity is inevitably suppressed in reduced dimensionality. Questions of how thin superconducting wires or films can be before they lose their superconducting properties have important technological ramifications and go to the heart of understanding coherence and robustness of the superconducting state in quantum-confined geometries. Here, we exploit quantum confinement of itinerant electrons in a soft metal to stabilize superconductors with lateral dimensions of the order of a few millimeters and vertical dimensions of only a few atomic layers. These extremely thin superconductors show no indication of defect- or fluctuation-driven suppression of superconductivity and sustain supercurrents of up to 10% of the depairing current density. The extreme hardness of the critical state is attributed to quantum trapping of vortices. This study paints a conceptually appealing, elegant picture of a model nanoscale superconductor with calculable critical state properties. It indicates the intriguing possibility of exploiting robust superconductivity at the nanoscale.Comment: 15 pages, 4 figures, submitted to Nature Physic

    At the coalface and the cutting edge: general practitioners’ accounts of the rewards of engaging with HIV medicine

    Get PDF
    The interviews we conducted with GPs suggest that an engagement with HIV medicine enables clinicians to develop strong and long-term relationships with and expertise about the care needs of people living with HIV ‘at the coalface’, while also feeling connected with a broader network of medical practitioners and other professionals concerned with and contributing to the ever-changing world of science: ‘the cutting edge’. The general practice HIV prescriber is being modelled here as the interface between these two worlds, offering a rewarding opportunity for general practitioners to feel intimately connected to both community needs and scientific change
    corecore