54 research outputs found
Central collisions of relativistic heavy ions
The energy spectra of protons and light nuclei produced by the interaction of 4He and 20Ne projectiles with Al and U targets have been investigated at incident energies ranging from 0.25 to 2.1 GeV per nucleon. Single fragment inclusive spectra have been obtained at angles between 25° and 150°, in the energy range from 30 to 150 MeV/nucleon. The multiplicity of intermediate and high energy charged particles was determined in coincidence with the measured fragments. In a separate study, fragment spectra were obtained in the evaporation energy range from 12C and 20Ne bombardment of uranium. We observe structureless, exponentially decaying spectra throughout the range of studied fragment masses. There is evidence for two major classes of fragments; one with emission at intermediate temperature from a system moving slowly in the lab frame, and the other with high temperature emission from a system propagating at a velocity intermediate between target and projectile. The high energy proton spectra are fairly well reproduced by a nuclear fireball model based on simple geometrical, kinematical, and statistical assumptions. Light cluster emission is also discussed in the framework of statistical models. NUCLEAR REACTIONS U(20Ne,X), E=250 MeV/nucl.; U(20Ne,X), U(α,X) E=400 MeV/nucl.; U(20Ne,X), Al(20Ne,X), E=2.1 GeV/nucl.; measured σ(E,θ), X=p, d, t, 3He,4He. U(20Ne,X), U(α,X), E=400 MeV/nucl.; U(20Ne,X), E=2.1 GeV/nucl.; measured σ(E, θ), Li to O. U(20Ne,X), U(12C,X), E=2.1 GeV/nucl.; measured σ(E, 90°), 4He to B. Nuclear fireballs, coalescence, thermodynamics of light nuclei production
Nuclear fireball model for proton inclusive spectra from relativistic heavy-ion collisions
A simple model is proposed for the emission of nucleons with velocities intermediate between those of the target and projectile. In this model, the nucleons which are mutually swept out from the target and projectile form a hot quasiequilibrated fireball which decays as an ideal gas. The overall features of the proton-inclusive spectra from 250- and 400-MeV/nucleon 20Ne ions and 400-MeV/nucleon 4He ions interacting with uranium are fitted without any adjustable parameters
Pion production in the 40Ar+40Ca reaction at 1.05 GeV/nucleon
Pion-production cross sections have been measured for the reaction 40Ar+40Ca--> pi ++X at a laboratory energy of 1.05 GeV/nucleon. A maximum in the pi + cross section occurs at mid-rapidity, which is anomalous relative to p+p and p+nucleus reactions and compared to many other heavy-ion reactions. Calculations based on cascade and thermal models fail to fit the data
Emission patterns in central and peripheral relativistic heavy-ion collisions
Proton emission in relativistic nuclear collisions is examined for events of low and high multiplicity, corresponding to large and small impact parameters. Peripheral reactions exhibit distributions of protons in agreement with spectator-participant decay modes. Central collisions of equal-size nuclei are dominated by the formation and decay of a fireball system. Central collisions of light projectiles with heavy targets exhibit an enhancement in sideward emission which is predicted by recent hydrodynamical calculations
Pion production and charged-particle multiplicity selection in relativistic nuclear collisions
Spectra of positive pions with energies of 15-95 MeV were measured for high energy proton, 4He, 20Ne, and 40Ar bombardments of targets of 27Al, 40Ca, 107,109Ag, 197Au, and 238U. A Si-Ge telescope was used to identify charged pions by dE / dx-E and, in addition, stopped pi + were tagged by the subsequent muon decay. In all, results for 14 target-projectile combinations are presented to study the dependence of pion emission patterns on the bombarding energy (from E / A=0.25 to 2.1 GeV) and on the target and the projectile masses. In addition, associated charged-particle multiplicities were measured in an 80-paddle array of plastic scintillators, and used to make impact parameter selections on the pion-inclusive data. NUCLEAR REACTIONS U(20Ne, pi +), E / A=250 MeV; U(40Ar, pi +), Ca(40Ar, pi +), U(20Ne, pi +), Au(20Ne, pi +), Ag(20Ne, pi +), Al(20Ne, pi +), U(4He, pi +), Al(4He, pi +). E / A=400 MeV; Ca(40Ar, pi +), U(20Ne, pi +), U(4He, pi +), U(p, pi +), E / A=1.05), GeV; U(20Ne, pi +), E / A=2.1 GeV; measured sigma (E, theta ), inclusive and selected on associated charged-particle multiplicity
Spectra of p, d, and t from relativistic nuclear collisions
Inclusive energy spectra of protons, deuterons, and tritons were measured with a telescope of silicon and germanium detectors with a detection range for proton energies up to 200 MeV. Fifteen sets of data were taken using projectiles ranging from protons to 40Ar on targets from 27Al to 238U at bombarding energies from 240 MeV/nucleon to 2.1 GeV/nucleon. Particular attention was paid to the absolute normalization of the cross sections. For three previously reported reactions, He fragment cross sections have been corrected and are presented. To facilitate a comparison with theory the sum of nucleonic charges emitted as protons plus composite particles was estimated and is presented as a function of fragment energy per nucleon in the interval from 15 to 200 MeV/nucleon. For low-energy fragments at forward angles the protons account for only 25% of the nucleonic charges. The equal mass 40Ar plus Ca systems were examined in the center of mass. Here at 0.4 GeV/nucleon 40Ar plus Ca the proton spectra appear to be nearly isotropic in the center of mass over the region measured. Comparisons of some data with firestreak, cascade, and fluid dynamics models indicate a failure of the first and a fair agreement with the latter two. In addition, associated fast charged particle multiplicities (where the particles had energies larger than 25 MeV/nucleon) and azimuthal correlations were measured with an 80 counter array of plastic scintillators. It was found that the associated multiplicities were a smooth function of the total kinetic energy of the projectile. NUCLEAR REACTIONS U(20Ne,X), E / A=240 MeV/nucleon; U(40Ar,X), Ca(40Ar,X), U(20Ne,X), Au(20Ne,X), Ag(20Ne,X), Al(20Ne,X), U(4He,X), Al(4He,X), E / A=390 MeV/nucleon; U(40Ar,X), Ca(40Ar,X), U(20Ne,X), U(4He,X), U(p,X), E / A=1.04 GeV/nucleon; U(20Ne,X), E / A=2.1 GeV/nucleon; measured sigma (E, theta ), X=p,d,t
X-Ray Spectroscopy of Stars
(abridged) Non-degenerate stars of essentially all spectral classes are soft
X-ray sources. Low-mass stars on the cooler part of the main sequence and their
pre-main sequence predecessors define the dominant stellar population in the
galaxy by number. Their X-ray spectra are reminiscent, in the broadest sense,
of X-ray spectra from the solar corona. X-ray emission from cool stars is
indeed ascribed to magnetically trapped hot gas analogous to the solar coronal
plasma. Coronal structure, its thermal stratification and geometric extent can
be interpreted based on various spectral diagnostics. New features have been
identified in pre-main sequence stars; some of these may be related to
accretion shocks on the stellar surface, fluorescence on circumstellar disks
due to X-ray irradiation, or shock heating in stellar outflows. Massive, hot
stars clearly dominate the interaction with the galactic interstellar medium:
they are the main sources of ionizing radiation, mechanical energy and chemical
enrichment in galaxies. High-energy emission permits to probe some of the most
important processes at work in these stars, and put constraints on their most
peculiar feature: the stellar wind. Here, we review recent advances in our
understanding of cool and hot stars through the study of X-ray spectra, in
particular high-resolution spectra now available from XMM-Newton and Chandra.
We address issues related to coronal structure, flares, the composition of
coronal plasma, X-ray production in accretion streams and outflows, X-rays from
single OB-type stars, massive binaries, magnetic hot objects and evolved WR
stars.Comment: accepted for Astron. Astrophys. Rev., 98 journal pages, 30 figures
(partly multiple); some corrections made after proof stag
The Effect of Particulate Air Pollution on Emergency Admissions for Myocardial Infarction: A Multicity Case-Crossover Analysis
Recently, attention has focused on whether particulate air pollution is a specific trigger of myocardial infarction (MI). The results of several studies of single locations assessing the effects of ambient particular matter on the risk of MI have been disparate. We used a multicity case-crossover study to examine risk of emergency hospitalization associated with fine particulate matter (PM) with aerodynamic diameter < 10 μm (PM(10)) for > 300,000 MIs during 1985–1999 among elderly residents of 21 U.S. cities. We used time-stratified controls matched on day of the week or on temperature to detect possible residual confounding by weather. Overall, we found a 0.65% [95% confidence interval (CI), 0.3–1.0%] increased risk of hospitalization for MI per 10 μg/m(3) increase in ambient PM(10) concentration. Matching on apparent temperature yielded a 0.64% increase in risk (95% CI, 0.1–1.2%). We found that the effect size for PM(10) doubled for subjects with a previous admission for chronic obstructive pulmonary disease or a secondary diagnosis of pneumonia, although these differences did not achieve statistical significance. There was a weaker indication of a larger effect on males but no evidence of effect modification by age or the other diagnoses. We also found that the shape of the exposure–response relationship between MI hospitalizations and PM(10) is almost linear, but with a steeper slope at levels of PM(10) < 50 μg/m(3). We conclude that increased concentrations of ambient PM(10) are associated with increased risk of MI among the elderly
Critical Dynamics in Genetic Regulatory Networks: Examples from Four Kingdoms
The coordinated expression of the different genes in an organism is essential to sustain functionality under the random external perturbations to which the organism might be subjected. To cope with such external variability, the global dynamics of the genetic network must possess two central properties. (a) It must be robust enough as to guarantee stability under a broad range of external conditions, and (b) it must be flexible enough to recognize and integrate specific external signals that may help the organism to change and adapt to different environments. This compromise between robustness and adaptability has been observed in dynamical systems operating at the brink of a phase transition between order and chaos. Such systems are termed critical. Thus, criticality, a precise, measurable, and well characterized property of dynamical systems, makes it possible for robustness and adaptability to coexist in living organisms. In this work we investigate the dynamical properties of the gene transcription networks reported for S. cerevisiae, E. coli, and B. subtilis, as well as the network of segment polarity genes of D. melanogaster, and the network of flower development of A. thaliana. We use hundreds of microarray experiments to infer the nature of the regulatory interactions among genes, and implement these data into the Boolean models of the genetic networks. Our results show that, to the best of the current experimental data available, the five networks under study indeed operate close to criticality. The generality of this result suggests that criticality at the genetic level might constitute a fundamental evolutionary mechanism that generates the great diversity of dynamically robust living forms that we observe around us
- …