120 research outputs found

    In vivo evaluation of [18F]fluoroetanidazole as a new marker for imaging tumour hypoxia with positron emission tomography

    Get PDF
    Development of hypoxia-targeted therapies has stimulated the search for clinically applicable noninvasive markers of tumour hypoxia. Here, we describe the validation of [18F]fluoroetanidazole ([18F]FETA) as a tumour hypoxia marker by positron emission tomography (PET). Cellular transport and retention of [18F]FETA were determined in vitro under air vs nitrogen. Biodistribution and metabolism of the radiotracer were determined in mice bearing MCF-7, RIF-1, EMT6, HT1080/26.6, and HT1080/1-3C xenografts. Dynamic PET imaging was performed on a dedicated small animal scanner. [18F]FETA, with an octanol–water partition coefficient of 0.16±0.01, was selectively retained by RIF-1 cells under hypoxia compared to air (3.4- to 4.3-fold at 60–120 min). The radiotracer was stable in the plasma and distributed well to all the tissues studied. The 60-min tumour/muscle ratios positively correlated with the percentage of pO2 values <5 mmHg (r=0.805, P=0.027) and carbogen breathing decreased [18F]FETA-derived radioactivity levels (P=0.028). In contrast, nitroreductase activity did not influence accumulation. Tumours were sufficiently visualised by PET imaging within 30–60 min. Higher fractional retention of [18F]FETA in HT1080/1-3C vs HT1080/26.6 tumours determined by dynamic PET imaging (P=0.05) reflected higher percentage of pO2 values <1 mmHg (P=0.023), lower vessel density (P=0.026), and higher radiobiological hypoxic fraction (P=0.008) of the HT1080/1-3C tumours. In conclusion, [18F]FETA shows hypoxia-dependent tumour retention and is, thus, a promising PET marker that warrants clinical evaluation

    Prospective cohort study of radiotherapy with concomitant and adjuvant temozolomide chemotherapy for glioblastoma patients with no or minimal residual enhancing tumor load after surgery

    Get PDF
    Survival of glioblastoma patients has been linked to the completeness of surgical resection. Available data, however, were generated with adjuvant radiotherapy. Data confirming that extensive cytoreduction remains beneficial to patients treated with the current standard, concomitant temozolomide radiochemotherapy, are limited. We therefore analyzed the efficacy of radiochemotherapy for patients with little or no residual tumor after surgery. In this prospective, non-interventional multicenter cohort study, entry criteria were histological diagnosis of glioblastoma, small enhancing or no residual tumor on post-operative MRI, and intended temozolomide radiochemotherapy. The primary study objective was progression-free survival; secondary study objectives were survival and toxicity. Furthermore, the prognostic value of O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation was investigated in a subgroup of patients. One-hundred and eighty patients were enrolled. Fourteen were excluded by patient request or failure to initiate radiochemotherapy. Twenty-three patients had non-evaluable post-operative imaging. Thus, 143 patients qualified for analysis, with 107 patients having residual tumor diameters ≤1.5 cm. Median follow-up was 24.0 months. Median survival or patients without residual enhancing tumor exceeded the follow-up period. Median survival was 16.9 months for 32 patients with residual tumor diameters >0 to ≤1.5 cm (95% CI: 13.3–20.5, p = 0.039), and 13.9 months (10.3–17.5, overall p < 0.001) for 36 patients with residual tumor diameters >1.5 cm. Patient age at diagnosis and extent of resection were independently associated with survival. Patients with MGMT promoter methylated tumors and complete resection made the best prognosis. Completeness of resection acts synergistically with concomitant and adjuvant radiochemotherapy, especially in patients with MGMT promoter methylation

    Radiation Induces Acute Alterations in Neuronal Function

    Get PDF
    Every year, nearly 200,000 patients undergo radiation for brain tumors. For both patients and caregivers the most distressing adverse effect is impaired cognition. Efforts to protect against this debilitating effect have suffered from inadequate understanding of the cellular mechanisms of radiation damage. In the past it was accepted that radiation-induced normal tissue injury resulted from a progressive reduction in the survival of clonogenic cells. Moreover, because radiation-induced brain dysfunction is believed to evolve over months to years, most studies have focused on late changes in brain parenchyma. However, clinically, acute changes in cognition are also observed. Because neurons are fully differentiated post-mitotic cells, little information exists on the acute effects of radiation on synaptic function. The purpose of our study was to assess the potential acute effects of radiation on neuronal function utilizing ex vivo hippocampal brain slices. The cellular localization and functional status of excitatory and inhibitory neurotransmitter receptors was identified by immunoblotting. Electrophysiological recordings were obtained both for populations of neuronal cells and individual neurons. In the dentate gyrus region of isolated ex vivo slices, radiation led to early decreases in tyrosine phosphorylation and removal of excitatory N-methyl-D-aspartate receptors (NMDARs) from the cell surface while simultaneously increasing the surface expression of inhibitory gamma-aminobutyric acid receptors (GABAARs). These alterations in cellular localization corresponded with altered synaptic responses and inhibition of long-term potentiation. The non-competitive NMDAR antagonist memantine blocked these radiation-induced alterations in cellular distribution. These findings demonstrate acute effects of radiation on neuronal cells within isolated brain slices and open new avenues for study

    HIF-1α inhibition by siRNA or chetomin in human malignant glioma cells: effects on hypoxic radioresistance and monitoring via CA9 expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hypoxia induces activation of the HIF-1 pathway and is an essential characteristic of malignant gliomas. Hypoxia has been linked to tumor progression, therapy resistance and poor prognosis. However, little is known about the impact of HIF-1α inhibition on radioresistance of malignant glioma.</p> <p>Methods</p> <p>In this study, we investigated the effects of the inhibition of HIF-1α on cell survival and radiosensitivity in U251MG and U343MG glioma cells, using two different strategies. HIF-1α inhibition was achieved by siRNA targeting of HIF-1α or via chetomin, a disruptor of interactions between HIF-1α and p300. The inhibition of the HIF-1 pathway was monitored by quantitative real-time PCR and Western blot analyses of the expression levels of HIF-1α and CA9. CA9 expression was investigated as a potential indicator of the efficacy of HIF-1 inhibition and the resulting radiosensitivity of malignant glioma cell lines was determined by clonogenic assay after irradiation under normoxic (2-10 Gy) or hypoxic (2-15 Gy) conditions.</p> <p>Results</p> <p>Although siRNA and chetomin show distinct modes of action, both attenuated the hypoxia-induced radioresistance of malignant glioma cell lines U251MG (DMF<sub>10</sub>: 1.35 and 1.18) and U343MG (DMF<sub>10</sub>: 1.78 and 1.48). However, siRNA and chetomin showed diverse effects on radiosensitivity under normoxic conditions in U251MG (DMF<sub>10</sub>: 0.86 and 1.35) and U343MG (DMF<sub>10</sub>: 1.33 and 1.02) cells.</p> <p>Conclusions</p> <p>Results from this <it>in vitro </it>study suggest that inhibition of HIF-1α is a promising strategy to sensitize human malignant gliomas to radiotherapy and that CA9 could serve as an indicator of effective HIF-1-related radiosensitization.</p

    Phase II trial of radiotherapy after hyperbaric oxygenation with chemotherapy for high-grade gliomas

    Get PDF
    We conducted a phase II trial to evaluate the efficacy and toxicity of radiotherapy immediately after hyperbaric oxygenation (HBO) with chemotherapy in adults with high-grade gliomas. Patients with histologically confirmed high-grade gliomas were administered radiotherapy in daily 2 Gy fractions for 5 consecutive days per week up to a total dose of 60 Gy. Each fraction was administered immediately after HBO with the period of time from completion of decompression to irradiation being less than 15 min. Chemotherapy consisted of procarbazine, nimustine (ACNU) and vincristine and was administered during and after radiotherapy. A total of 41 patients (31 patients with glioblastoma and 10 patients with grade 3 gliomas) were enrolled. All 41 patients were able to complete a total radiotherapy dose of 60 Gy immediately after HBO with one course of concurrent chemotherapy. Of 30 assessable patients, 17 (57%) had an objective response including four CR and 13 PR. The median time to progression and the median survival time in glioblastoma patients were 12.3 months and 17.3 months, respectively. On univariate analysis, histologic grade (P=0.0001) and Karnofsky performance status (P=0.036) had a significant impact on survival, and on multivariate analysis, histologic grade alone was a significant prognostic factor for survival (P=0.001). Although grade 4 leukopenia and grade 4 thrombocytopenia occurred in 10 and 7% of all patients, respectively, these were transient with no patients developing neutropenic fever or intracranial haemorrhage. No serious nonhaematological or late toxicities were seen. These results indicated that radiotherapy delivered immediately after HBO with chemotherapy was safe with virtually no late toxicity in patients with high-grade gliomas. Further studies are required to strictly evaluate the effectiveness of radiotherapy after HBO for these tumours

    Increased betulinic acid induced cytotoxicity and radiosensitivity in glioma cells under hypoxic conditions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Betulinic acid (BA) is a novel antineoplastic agent under evaluation for tumor therapy. Because of the selective cytotoxic effects of BA in tumor cells (including gliomas), the combination of this agent with conservative therapies (such as radiotherapy and chemotherapy) may be useful. Previously, the combination of BA with irradiation under hypoxic conditions had never been studied.</p> <p>Methods</p> <p>In this study, the effects of 3 to 30 μM BA on cytotoxicity, migration, the protein expression of PARP, survivin and HIF-1α, as well as radiosensitivity under normoxic and hypoxic conditions were analyzed in the human malignant glioma cell lines U251MG and U343MG. Cytotoxicity and radiosensitivity were analyzed with clonogenic survival assays, migration was analyzed with Boyden chamber assays (or scratch assays) and protein expression was examined with Western blot analyses.</p> <p>Results</p> <p>Under normoxic conditions, a half maximal inhibitory concentration (IC<sub>50</sub>) of 23 μM was observed in U251MG cells and 24 μM was observed in U343MG cells. Under hypoxic conditions, 10 μM or 15 μM of BA showed a significantly increased cytotoxicity in U251MG cells (p = 0.004 and p = 0.01, respectively) and U343MG cells (p < 0.05 and p = 0.01, respectively). The combination of BA with radiotherapy resulted in an additive effect in the U343MG cell line under normoxic and hypoxic conditions. Weak radiation enhancement was observed in U251MG cell line after treatment with BA under normoxic conditions. Furthermore, under hypoxic conditions, the incubation with BA resulted in increased radiation enhancement. The enhancement factor, at an irradiation dose of 15 Gy after treatment with 10 or 15 μM BA, was 2.20 (p = 0.02) and 4.50 (p = 0.03), respectively. Incubation with BA led to decreased cell migration, cleavage of PARP and decreased expression levels of survivin in both cell lines. Additionally, BA treatment resulted in a reduction of HIF-1α protein under hypoxic conditions.</p> <p>Conclusion</p> <p>Our results suggest that BA is capable of improving the effects of tumor therapy in human malignant glioma cells, particularly under hypoxic conditions. Further investigations are necessary to characterize its potential as a radiosensitizer.</p

    CD133 Is a Marker of Bioenergetic Stress in Human Glioma

    Get PDF
    Mitochondria dysfunction and hypoxic microenvironment are hallmarks of cancer cell biology. Recently, many studies have focused on isolation of brain cancer stem cells using CD133 expression. In this study, we investigated whether CD133 expression is regulated by bioenergetic stresses affecting mitochondrial functions in human glioma cells. First, we determined that hypoxia induced a reversible up-regulation of CD133 expression. Second, mitochondrial dysfunction through pharmacological inhibition of the Electron Transport Chain (ETC) produced an up-regulation of CD133 expression that was inversely correlated with changes in mitochondrial membrane potential. Third, generation of stable glioma cells depleted of mitochondrial DNA showed significant and stable increases in CD133 expression. These glioma cells, termed rho0 or ρ0, are characterized by an exaggerated, uncoupled glycolytic phenotype and by constitutive and stable up-regulation of CD133 through many cell passages. Moreover, these ρ0 cells display the ability to form “tumor spheroids” in serumless medium and are positive for CD133 and the neural progenitor cell marker, nestin. Under differentiating conditions, ρ0 cells expressed multi-lineage properties. Reversibility of CD133 expression was demonstrated by transfering parental mitochondria to ρ0 cells resulting in stable trans-mitochondrial “cybrid” clones. This study provides a novel mechanistic insight about the regulation of CD133 by environmental conditions (hypoxia) and mitochondrial dysfunction (genetic and chemical). Considering these new findings, the concept that CD133 is a marker of brain tumor stem cells may need to be revised
    corecore