28 research outputs found

    Permanent genetic memory with >1-byte capacity

    No full text
    Genetic memory enables the recording of information in the DNA of living cells. Memory can record a transient environmental signal or cell state that is then recalled at a later time. Permanent memory is implemented using irreversible recombinases that invert the orientation of a unit of DNA, corresponding to the [0,1] state of a bit. To expand the memory capacity, we have applied bioinformatics to identify 34 phage integrases (and their cognate attB and attP recognition sites), from which we build 11 memory switches that are perfectly orthogonal to each other and the FimE and HbiF bacterial invertases. Using these switches, a memory array is constructed in Escherichia coli that can record 1.375 bytes of information. It is demonstrated that the recombinases can be layered and used to permanently record the transient state of a transcriptional logic gate.United States. Defense Advanced Research Projects Agency (DARPA CLIO N66001-12-C-4016)United States. Defense Advanced Research Projects Agency (DARPA CLIO N66001-12-C-4018)United States. Office of Naval Research. Multidisciplinary University Research Initiative (N00014-13-1-0074)National Institutes of Health (U.S.) (GM095765)National Institute of General Medical Sciences (U.S.) (P50 GM098792)National Science Foundation (U.S.). Synthetic Biology Engineering Research Center (SynBERC EEC0540879)FA9550-11-C-0028American Society for Engineering Education. National Defense Science and Engineering Graduate Fellowship (32 CFR 168a

    A cascade of DNA-binding proteins for sexual commitment and development in Plasmodium

    No full text
    Commitment to and completion of sexual development are essential for malaria parasites (protists of the genus Plasmodium) to be transmitted through mosquitoes1. The molecular mechanism(s) responsible for commitment have been hitherto unknown. Here we show that PbAP2-G, a conserved member of the apicomplexan AP2 (ApiAP2) family of DNA-binding proteins, is essential for the commitment of asexually replicating forms to sexual development in Plasmodium berghei, a malaria parasite of rodents. PbAP2-G was identified from mutations in its encoding gene, PBANKA_143750, which account for the loss of sexual development frequently observed in parasites transmitted artificially by blood passage. Systematic gene deletion of conserved ApiAP2 genes in Plasmodium confirmed the role of PbAP2-G and revealed a second ApiAP2 member (PBANKA_103430, here termed PbAP2-G2) that significantly modulates but does not abolish gametocytogenesis, indicating that a cascade of ApiAP2 proteins are involved in commitment to the production and maturation of gametocytes. The data suggest a mechanism of commitment to gametocytogenesis in Plasmodium consistent with a positive feedback loop involving PbAP2-G that could be exploited to prevent the transmission of this pernicious parasite
    corecore