21 research outputs found
Incremental Mutual Information: A New Method for Characterizing the Strength and Dynamics of Connections in Neuronal Circuits
Understanding the computations performed by neuronal circuits requires characterizing the strength and dynamics of the connections between individual neurons. This characterization is typically achieved by measuring the correlation in the activity of two neurons. We have developed a new measure for studying connectivity in neuronal circuits based on information theory, the incremental mutual information (IMI). By conditioning out the temporal dependencies in the responses of individual neurons before measuring the dependency between them, IMI improves on standard correlation-based measures in several important ways: 1) it has the potential to disambiguate statistical dependencies that reflect the connection between neurons from those caused by other sources (e. g. shared inputs or intrinsic cellular or network mechanisms) provided that the dependencies have appropriate timescales, 2) for the study of early sensory systems, it does not require responses to repeated trials of identical stimulation, and 3) it does not assume that the connection between neurons is linear. We describe the theory and implementation of IMI in detail and demonstrate its utility on experimental recordings from the primate visual system
Divisive Gain Modulation with Dynamic Stimuli in Integrate-and-Fire Neurons
The modulation of the sensitivity, or gain, of neural responses to input is an important component of neural computation. It has been shown that divisive gain modulation of neural responses can result from a stochastic shunting from balanced (mixed excitation and inhibition) background activity. This gain control scheme was developed and explored with static inputs, where the membrane and spike train statistics were stationary in time. However, input statistics, such as the firing rates of pre-synaptic neurons, are often dynamic, varying on timescales comparable to typical membrane time constants. Using a population density approach for integrate-and-fire neurons with dynamic and temporally rich inputs, we find that the same fluctuation-induced divisive gain modulation is operative for dynamic inputs driving nonequilibrium responses. Moreover, the degree of divisive scaling of the dynamic response is quantitatively the same as the steady-state responses—thus, gain modulation via balanced conductance fluctuations generalizes in a straight-forward way to a dynamic setting
Population density models of integrate-and-fire neurons with jumps: well-posedness
International audienceIn this paper we study the well-posedness of different models of population of leaky integrate- and- re neurons with a population density approach. The synaptic interaction between neurons is modeled by a potential jump at the reception of a spike. We study populations that are self excitatory or self inhibitory. We distinguish the cases where this interaction is instantaneous from the one where there is a repartition of conduction delays. In the case of a bounded density of delays both excitatory and inhibitory population models are shown to be well-posed. But without conduction delay the solution of the model of self excitatory neurons may blow up. We analyze the di erent behaviours of the model with jumps compared to its di usion approximation