30 research outputs found

    Revealing the origin of voltage loss in mixed-halide perovskite solar cells

    Get PDF
    The tunable bandgap of metal-halide perovskites has opened up the possibility of tandem solar cells with over 30% efficiency. Iodide-Bromide (I-Br) mixed-halide perovskites are crucial to achieve the optimum bandgap for such tandems. However, when the Br content is increased to widen the bandgap, cells fail to deliver the expected increase in open-circuit voltage (VOC). This loss in VOC has been attributed to photo-induced halide segregation. Here, we combine Fourier Transform Photocurrent Spectroscopy (FTPS) with detailed balance calculations to quantify the voltage loss expected from the halide segregation, providing a means to quantify the VOC losses arising from the formation of low bandgap iodide-rich phases during halide segregation. Our results indicate that, contrary to popular belief, halide segregation is not the dominant VOC loss mechanism in Br-rich wide bandgap cells. Rather, the loss is dominated by the relatively low initial radiative efficiency of the cells, which arises from both imperfections within the absorber layer, and at the perovskite/charge extraction layer heterojunctions. We thus identify that focussing on maximising the initial radiative efficiency of the mixed-halide films and devices is more important than attempting to suppress halide segeregation. Our results suggest that a VOC of up to 1.33 V is within reach for a 1.77 eV bandgap perovskite, even if halide segregation cannot be supresse

    Adsorption of bisphenol A on lignin: effects of solution chemistry

    Full text link
    Adsorption of bisphenol A on a lignin isolated from black liquor, a waste product of the paper industry, was investigated to assess the possibility of using the lignin to remove bisphenol A from waters. Effects of pH, ionic strength, heavy metals, and dissolved organic matter (DOM) on adsorption were examined. Adsorption equilibrium was approached within 5 h. The adsorption capacity of bisphenol A on lignin was as high as 237.07 mg/g. Ionic strength had no influence on the adsorption, while higher pH above 7.5 inhibited bisphenol A adsorption due to the repulsive electrostatic interaction between bisphenolate anion and the negatively charged lignin surface. The presence of heavy metals of copper and lead increased the adsorption by 11.90 and 26.80 %, respectively, possibly through modifying the physiochemical configuration characteristics of labile fraction of the lignin and reducing the polarity of it. No obvious impact of DOM on the adsorption was observed. The results of this study suggest that lignin is a promising adsorbent material to remove bisphenol A in wastewater containing complex components such as heavy metals and DOM, particularly at acid and neutral conditions
    corecore