40 research outputs found

    Integrated Process Chain for Aerostructural Wing Optimization and Application to an NLF Forward Swept Composite Wing

    Get PDF
    This contribution introduces an integrated process chain for aerostructural wing optimization based on high fidelity simulationmethods. The architecture of this process chain enables two of the most promising future technologies in commercial aircraft design in the context of multidisciplinary design optimization (MDO). These technologies are natural laminar flow (NLF) and aeroelastic tailoring using carbon fiber reinforced plastics (CFRP). With this new approach the application of MDO to an NLF forward swept composite wing will be possible. The main feature of the process chain is the hierarchical decomposition of the optimization problem into two levels. On the highest level the wing planform including twist and airfoil thickness distributions as well as the orthotropy direction of the composite structure will be optimized. The lower optimization level includes the wing box sizing for essential load cases considering the static aeroelastic deformations. Additionally, the airfoil shapes are transferred from a given NLF wing design. The natural laminar flow is considered by prescribing laminar-turbulent transition locations. Results of wing design studies and a wing optimization using the process chain are presented for a forward swept wing aircraft configuration. The wing optimization with 12 design parameters shows a fuel burn reduction in the order of 9% for the design mission

    Transonic Similarity Laws

    No full text

    Conceptual Design and Fluid Structure Interaction Analysis of a Solar Powered High-Altitude Pseudo-Satellite (HAPS) UAV Wing Model

    No full text
    High altitude platforms or Pseudo-satellites (HAPS) are unmanned aerial vehicles that can fly above 17 km from sea level. It can take advantage of weak stratospheric winds and solar energy to operate without interfering with current commercial aviation and with enough endurance to provide long-term services as satellites do. The technological innovations and the growing urgency to expand the availability of broadband led to the development of HAPS. Besides that, Earth observation, positioning, astronomy, and science are the main applications of High altitude platforms, or Pseudo-satellites (HAPS). In this paper, the conceptual design of the novel HAPS UAV based on the initial requirements regarding cruising height of 20 km, the cruising velocity of 25 m/s, and payload of 15 kg were performed and described. The HAPS wing was defined and aerodynamically studied in detail. The computed nominal load was used as input parameter for structural analysis of the wing’s inner structure comprising outer shell, main spars, and ribs made of composite and plastic materials. All computations were performed using commercial software package ANSYS. The obtained results are discussed and graphically presented by computed stress and deformation fields
    corecore