675 research outputs found
Combating hypoxia/anoxia at sediment-water interfaces: a preliminary study of oxygen nanobubble modified clay materials
Combating hypoxia/anoxia is an increasingly common need for restoring natural waters suffering from eutrophication. Oxygen nanobubble modified natural particles were investigated for mitigating hypoxia/anoxia at the sediment-water interface (SWI) in a simulated column experiment. By adding oxygen nanobubble modified zeolites (ONMZ) and local soils (ONMS), the oxygen nanobubble concentrations (105–107 particles/mL) were several orders of magnitude higher in the water than the original water solution (104 particles/mL) within 24 h. In the column experiment, an oxygen-locking surface sediment layer was formed after capping with ONMZ and ONMS particles. The synergy of diffusion of oxygen nanobubbles and retention of oxygen in this layer contributes to both the increase of DO and reversal of hypoxic conditions. The overlying water had significantly higher dissolved oxygen (DO) values (4–7.5 mg/L) over the experimental period of 127 days in ONMZ and ONMS compared with the control systems (around 1 mg/L). Moreover, the oxidation-reduction potential (ORP) was reversed from −200 mV to 180–210 mV and maintained positive values for 89 days in ONMZ systems. In the control systems, ORP was consistently negative and decreased from −200 mV to −350 mV. The total phosphorus (TP) flux from sediment to water across the SWI was negative in the ONMZ and ONMS treated systems, but positive in the control system, indicating the sediment could be switched from TP source to sink. The oxygen-locking capping layer was crucial in preventing oxygen consumption caused by the reduced substances released from the anoxic sediment. The study outlines a potentially promising technology for mitigating sediment anoxia and controlling nutrient release from sediments, which could contribute significantly to addressing eutrophication and ecological restoration
Radio and far-IR emission associated with a massive star-forming galaxy candidate at z ∼ 6.8: a radio-loud AGN in the reionization era?
We report the identification of radio (0.144-3 GHz) and mid-, far-infrared, and sub-mm (24-850μm) emission at the position of one of 41 UV-bright (M UV≲ -21.25) z 6.6-6.9 Lyman-break galaxy candidates in the 1.5 deg2 COSMOS field. This source, COS-87259, exhibits a sharp flux discontinuity (factor >3) between two narrow/intermediate bands at 9450 and 9700 Å and is undetected in all nine bands blueward of 9600 Å, as expected from a Lyman alpha break at z ≲ 6.8. The full multiwavelength (X-ray through radio) data of COS-87529 can be self-consistently explained by a very massive (M∗ = 1010.8 M·) and extremely red (rest-UV slope β = -0.59) z ≲ 6.8 galaxy with hyperluminous infrared emission (LIR = 1013.6 L·) powered by both an intense burst of highly obscured star formation (SFR ≈ 1800 M· yr-1) and an obscured (τ 9.7μ m = 7.7\pm 2.5) radio-loud (L1.4 GHz ≈ 1025.4 W Hz-1) active galactic nucleus (AGN). The radio emission is compact (1.04 ± 0.12 arcsec) and exhibits an ultra-steep spectrum between 1.32 and 3 GHz (α =-1.57+0.22-0.21) that flattens at lower frequencies (α = -0.86+0.22-0.16 between 0.144 and 1.32 GHz), consistent with known z > 4 radio galaxies. We also demonstrate that COS-87259 may reside in a significant (11×) galaxy overdensity, as common for systems hosting radio-loud AGN. While we find that low-redshift solutions to the optical + near-infrared data are not preferred, a spectroscopic redshift will ultimately be required to establish the true nature of COS-87259 beyond any doubt. If confirmed to lie at z ≲ 6.8, the properties of COS-87259 would be consistent with a picture wherein AGN and highly obscured star formation activity are fairly common among very massive (M∗ > 1010 M·) reionization-era galaxies
ALMA confirmation of an obscured hyperluminous radio-loud AGN at z = 6.853 associated with a dusty starburst in the 1.5 deg2 COSMOS field
We present band 6 ALMA observations of a heavily obscured radio-loud (L1.4 GHz = 1025.4 W Hz−1) active galactic nucleus (AGN) candidate at zphot = 6.83 ± 0.06 found in the 1.5 deg2 COSMOS field. The ALMA data reveal detections of exceptionally strong [C II]158 μm (z[C II] = 6.8532) and underlying dust continuum emission from this object (COS-87259), where the [C II] line luminosity, line width, and 158 μm continuum luminosity are comparable to those seen from z ∼ 7 sub-mm galaxies and quasar hosts. The 158 μm continuum detection suggests a total infrared luminosity of 9 × 1012 L☉ with corresponding very large obscured star formation rate (1300 M☉ yr−1) and dust mass (2 × 109 M☉). The strong break seen between the VIRCam and IRAC photometry perhaps suggests that COS-87259 is an extremely massive reionization-era galaxy with M∗ ≈ 1.7 × 1011 M☉. Moreover, the MIPS, PACS, and SPIRE detections imply that this object harbours an AGN that is heavily obscured (τ9.7 μm = 2.3) with a bolometric luminosity of approximately 5 × 1013 L☉. Such a very high AGN luminosity suggests that this object is powered by an ≈1.6 × 109 M☉ black hole if accreting near the Eddington limit, and is effectively a highly obscured version of an extremely ultraviolet (UV)-luminous (M1450 ≈ −27.3) z ∼ 7 quasar. Notably, these z ∼ 7 quasars are an exceedingly rare population (∼0.001 deg−2), while COS-87259 was identified over a relatively small field. Future very wide area surveys with e.g. Roman and Euclid have the potential to identify many more extremely red yet UV-bright z ≳ 7 objects similar to COS-87259, providing richer insight into the occurrence of intense obscured star formation and supermassive black hole growth among this population
Study of decays to the final state and evidence for the decay
A study of decays is performed for the first time
using data corresponding to an integrated luminosity of 3.0
collected by the LHCb experiment in collisions at centre-of-mass energies
of and TeV. Evidence for the decay
is reported with a significance of 4.0 standard deviations, resulting in the
measurement of
to
be .
Here denotes a branching fraction while and
are the production cross-sections for and mesons.
An indication of weak annihilation is found for the region
, with a significance of
2.4 standard deviations.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-022.html,
link to supplemental material inserted in the reference
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Care of adolescents and young adults with cancer in Asia: results of an ESMO/SIOPE/SIOP Asia survey
Background Adolescents and young adults (AYAs) with cancer require dedicated management encompassing both adult and paediatric cancer services. Following a European survey, the European Society for Medical Oncology, the European Society for Paediatric Oncology and the Asian continental branch of International Society of Paediatric Oncology undertook a similar survey to assess AYA cancer care across Asia.
Methods A link to the online survey was sent to healthcare professionals (HCPs) in Asia interested in AYA cancer care. Questions covered the demographics and training of HCPs, their understanding of AYA definition, availability and access to specialised AYA services, the support and advice offered during and after treatment, and factors of treatment non-compliance.
Results We received 268 responses from 22 Asian countries. There was a striking variation in the definition of AYA (median lower age 15 years, median higher age 29 years). The majority of the respondents (78%) did not have access to specialised cancer services and 73% were not aware of any research initiatives for AYA. Over two-thirds (69%) had the option to refer their patients for psychological and/or nutritional support and most advised their patients on a healthy lifestyle. Even so, 46% did not ask about smokeless tobacco habits and only half referred smokers to a smoking cessation service. Furthermore, 29% did not promote human papillomavirus vaccination for girls and 17% did not promote hepatitis B virus vaccination for high-risk individuals. In terms of funding, 69% reported governmental insurance coverage, although 65% reported that patients self-paid, at least partially. Almost half (47%) reported treatment non-compliance or abandonment as an issue, attributed to financial and family problems (72%), loss of follow-up (74%) and seeking of alternative treatments (77%).
Conclusions Lack of access to and suboptimal delivery of AYA-specialised cancer care services across Asia pose major challenges and require specific interventions
Epstein-Barr virus-encoded microRNA BART1 induces tumour metastasis by regulating PTEN-dependent pathways in nasopharyngeal carcinoma.
Epstein-Barr virus (EBV), aetiologically linked to nasopharyngeal carcinoma (NPC), is the first human virus found to encode many miRNAs. However, how these viral miRNAs precisely regulate the tumour metastasis in NPC remains obscure. Here we report that EBV-miR-BART1 is highly expressed in NPC and closely associated with pathological and advanced clinical stages of NPC. Alteration of EBV-miR-BART1 expression results in an increase in migration and invasion of NPC cells in vitro and causes tumour metastasis in vivo. Mechanistically, EBV-miR-BART1 directly targets the cellular tumour suppressor PTEN. Reduction of PTEN dosage by EBV-miR-BART1 activates PTEN-dependent pathways including PI3K-Akt, FAK-p130(Cas) and Shc-MAPK/ERK1/2 signalling, drives EMT, and consequently increases migration, invasion and metastasis of NPC cells. Reconstitution of PTEN rescues all phenotypes generated by EBV-miR-BART1, highlighting the role of PTEN in EBV-miR-BART-driven metastasis in NPC. Our findings provide new insights into the metastasis of NPC regulated by EBV and advocate for developing clinical intervention strategies against NPC
Skp is a multivalent chaperone of outer membrane proteins
The trimeric chaperone Skp sequesters outer-membrane proteins (OMPs) within a hydrophobic cage, thereby preventing their aggregation during transport across the periplasm in Gram-negative bacteria. Here, we studied the interaction between Escherichia coli Skp and five OMPs of varying size. Investigations of the kinetics of OMP folding revealed that higher Skp/OMP ratios are required to prevent the folding of 16-stranded OMPs compared with their 8-stranded counterparts. Ion mobility spectrometry–mass spectrometry (IMS–MS) data, computer modeling and molecular dynamics simulations provided evidence that 10- to 16-stranded OMPs are encapsulated within an expanded Skp substrate cage. For OMPs that cannot be fully accommodated in the expanded cavity, sequestration is achieved by binding of an additional Skp trimer. The results suggest a new mechanism for Skp chaperone activity involving the coordination of multiple copies of Skp in protecting a single substrate from aggregation
- …