2,589 research outputs found

    Untangling causality in midlatitude aerosol–cloud adjustments

    Get PDF
    Aerosol–cloud interactions represent the leading uncertainty in our ability to infer climate sensitivity from the observational record. The forcing from changes in cloud albedo driven by increases in cloud droplet number (Nd) (the first indirect effect) is confidently negative and has narrowed its probable range in the last decade, but the sign and strength of forcing associated with changes in cloud macrophysics in response to aerosol (aerosol–cloud adjustments) remain uncertain. This uncertainty reflects our inability to accurately quantify variability not associated with a causal link flowing from the cloud microphysical state to the cloud macrophysical state. Once variability associated with meteorology has been removed, covariance between the liquid water path (LWP) averaged across cloudy and clear regions (here characterizing the macrophysical state) and Nd (characterizing the microphysical) is the sum of two causal pathways linking Nd to LWP: Nd altering LWP (adjustments) and precipitation scavenging aerosol and thus depleting Nd. Only the former term is relevant to constraining adjustments, but disentangling these terms in observations is challenging. We hypothesize that the diversity of constraints on aerosol–cloud adjustments in the literature may be partly due to not explicitly characterizing covariance flowing from cloud to aerosol and aerosol to cloud. Here, we restrict our analysis to the regime of extratropical clouds outside of low-pressure centers associated with cyclonic activity. Observations from MAC-LWP (Multisensor Advanced Climatology of Liquid Water Path) and MODIS are compared to simulations in the Met Office Unified Model (UM) GA7.1 (the atmosphere model of HadGEM3-GC3.1 and UKESM1). The meteorological predictors of LWP are found to be similar between the model and observations. There is also agreement with previous literature on cloud-controlling factors finding that increasing stability, moisture, and sensible heat flux enhance LWP, while increasing subsidence and sea surface temperature decrease it. A simulation where cloud microphysics are insensitive to changes in Nd is used to characterize covariance between Nd and LWP that is induced by factors other than aerosol–cloud adjustments. By removing variability associated with meteorology and scavenging, we infer the sensitivity of LWP to changes in Nd. Application of this technique to UM GA7.1 simulations reproduces the true model adjustment strength. Observational constraints developed using simulated covariability not induced by adjustments and observed covariability between Nd and LWP predict a 25 %–30 % overestimate by the UM GA7.1 in LWP change and a 30 %–35 % overestimate in associated radiative forcing

    Financial toxicity: a potential side effect of prostate cancer treatment among Australian men.

    Full text link
    The purpose of this study was to understand the extent, nature and variability of the current economic burden of prostate cancer among Australian men. An online cross-sectional survey was developed that combined pre-existing economic measures and new questions. With few exceptions, the online survey was viable and acceptable to participants. The main outcomes were self-reported out-of-pocket costs of prostate cancer diagnosis and treatment, changes in employment status and household finances. Men were recruited from prostate cancer support groups throughout Australia. Descriptive statistical analyses were undertaken. A total of 289 men responded to the survey during April and June 2013. Our study found that men recently diagnosed (within 16 months of the survey) (n = 65) reported spending a median AU8000(interquartilerangeAU8000 (interquartile range AU14 000) for their cancer treatment while 75% of men spent up to AU17 000(2012).Twentypercentofallmenfoundthecostoftreatingtheirprostatecancercausedthem′agreatdeal′ofdistress.Thefindingssuggestalargevariabilityinmedicalcostsforprostatecancertreatmentwith517 000 (2012). Twenty per cent of all men found the cost of treating their prostate cancer caused them 'a great deal' of distress. The findings suggest a large variability in medical costs for prostate cancer treatment with 5% of men spending 250 or less in out-of-pocket expenses and some men facing very high costs. On average, respondents in paid employment at diagnosis stated that they had retired 4-5 years earlier than planned

    Alternative Metabolic Strategies are Employed by Endurance Runners of Different Body Sizes; Implications for Human Evolution

    Get PDF
    OBJECTIVE: A suite of adaptations facilitating endurance running (ER) evolved within the hominin lineage. This may have improved our ability to reach scavenging sites before competitors, or to hunt prey over long distances. Running economy (RE) is a key determinant of endurance running performance, and depends largely on the magnitude of force required to support body mass. However, numerous environmental factors influence body mass, thereby significantly affecting RE. This study tested the hypothesis that alternative metabolic strategies may have emerged to enable ER in individuals with larger body mass and poor RE. METHODS: A cohort of male (n = 25) and female (n = 19) ultra-endurance runners completed submaximal and exhaustive treadmill protocols to determine RE, and V̇O2Max. RESULTS: Body mass was positively associated with sub-maximal oxygen consumption at both LT1 (male r=0.66, p<0.001; female LT1 r=0.23, p=0.177) and LT2 (male r=0.59, p=0.001; female r=0.23, p=0.183) and also with V̇O2Max (male r=0.60, p=0.001; female r=0.41, p=0.046). Additionally, sub-maximal oxygen consumption varied positively with V̇O2Max in both male (LT1 r=0.54, p=0.003; LT2 r=0.77, p<0.001) and female athletes (LT1 r=0.88, p<0.001; LT2 r=0.92, p<0.001). CONCLUSIONS: The results suggest that, while individuals with low mass and good RE can glide economically as they run, larger individuals can compensate for the negative effects their mass has on RE by increasing their capacity to consume oxygen. The elevated energy expenditure of this low-economy high-energy turnover approach to ER may bring costs associated with energy diversion away from other physiological processes, however

    Locomotor adaptation to a powered ankle-foot orthosis depends on control method

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We studied human locomotor adaptation to powered ankle-foot orthoses with the intent of identifying differences between two different orthosis control methods. The first orthosis control method used a footswitch to provide bang-bang control (a kinematic control) and the second orthosis control method used a proportional myoelectric signal from the soleus (a physiological control). Both controllers activated an artificial pneumatic muscle providing plantar flexion torque.</p> <p>Methods</p> <p>Subjects walked on a treadmill for two thirty-minute sessions spaced three days apart under either footswitch control (n = 6) or myoelectric control (n = 6). We recorded lower limb electromyography (EMG), joint kinematics, and orthosis kinetics. We compared stance phase EMG amplitudes, correlation of joint angle patterns, and mechanical work performed by the powered orthosis between the two controllers over time.</p> <p>Results</p> <p>During steady state at the end of the second session, subjects using proportional myoelectric control had much lower soleus and gastrocnemius activation than the subjects using footswitch control. The substantial decrease in triceps surae recruitment allowed the proportional myoelectric control subjects to walk with ankle kinematics close to normal and reduce negative work performed by the orthosis. The footswitch control subjects walked with substantially perturbed ankle kinematics and performed more negative work with the orthosis.</p> <p>Conclusion</p> <p>These results provide evidence that the choice of orthosis control method can greatly alter how humans adapt to powered orthosis assistance during walking. Specifically, proportional myoelectric control results in larger reductions in muscle activation and gait kinematics more similar to normal compared to footswitch control.</p

    Hierarchical statistical techniques are necessary to draw reliable conclusions from analysis of isolated cardiomyocyte studies

    Get PDF
    Aims It is generally accepted that post-MI heart failure (HF) changes a variety of aspects of sarcoplasmic reticular Ca2+ fluxes but for some aspects there is disagreement over whether there is an increase or decrease. The commonest statistical approach is to treat data collected from each cell as independent, even though they are really clustered with multiple likely similar cells from each heart. In this study, we test whether this statistical assumption of independence can lead the investigator to draw conclusions that would be considered erroneous if the analysis handled clustering with specific statistical techniques (hierarchical tests). Methods and results Ca2+ transients were recorded in cells loaded with Fura-2AM and sparks were recorded in cells loaded with Fluo-4AM. Data were analysed twice, once with the common statistical approach (assumption of independence) and once with hierarchical statistical methodologies designed to allow for any clustering. The statistical tests found that there was significant hierarchical clustering. This caused the common statistical approach to underestimate the standard error and report artificially small P values. For example, this would have led to the erroneous conclusion that time to 50% peak transient amplitude was significantly prolonged in HF. Spark analysis showed clustering, both within each cell and also within each rat, for morphological variables. This means that a three-level hierarchical model is sometimes required for such measures. Standard statistical methodologies, if used instead, erroneously suggest that spark amplitude is significantly greater in HF and spark duration is reduced in HF. Conclusion Ca2+ fluxes in isolated cardiomyocytes show so much clustering that the common statistical approach that assumes independence of each data point will frequently give the false appearance of statistically significant changes. Hierarchical statistical methodologies need a little more effort, but are necessary for reliable conclusions. We present cost-free simple tools for performing these analyses

    PREDICT: a new UK prognostic model that predicts survival following surgery for invasive breast cancer.

    Get PDF
    INTRODUCTION: The aim of this study was to develop and validate a prognostication model to predict overall and breast cancer specific survival for women treated for early breast cancer in the UK. METHODS: Using the Eastern Cancer Registration and Information Centre (ECRIC) dataset, information was collated for 5,694 women who had surgery for invasive breast cancer in East Anglia from 1999 to 2003. Breast cancer mortality models for oestrogen receptor (ER) positive and ER negative tumours were derived from these data using Cox proportional hazards, adjusting for prognostic factors and mode of cancer detection (symptomatic versus screen-detected). An external dataset of 5,468 patients from the West Midlands Cancer Intelligence Unit (WMCIU) was used for validation. RESULTS: Differences in overall actual and predicted mortality were <1% at eight years for ECRIC (18.9% vs. 19.0%) and WMCIU (17.5% vs. 18.3%) with area under receiver-operator-characteristic curves (AUC) of 0.81 and 0.79 respectively. Differences in breast cancer specific actual and predicted mortality were <1% at eight years for ECRIC (12.9% vs. 13.5%) and <1.5% at eight years for WMCIU (12.2% vs. 13.6%) with AUC of 0.84 and 0.82 respectively. Model calibration was good for both ER positive and negative models although the ER positive model provided better discrimination (AUC 0.82) than ER negative (AUC 0.75). CONCLUSIONS: We have developed a prognostication model for early breast cancer based on UK cancer registry data that predicts breast cancer survival following surgery for invasive breast cancer and includes mode of detection for the first time. The model is well calibrated, provides a high degree of discrimination and has been validated in a second UK patient cohort.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Inclusion of KI67 significantly improves performance of the PREDICT prognostication and prediction model for early breast cancer.

    Get PDF
    BACKGROUND: PREDICT (http://www.predict.nhs.uk) is a prognostication and treatment benefit tool for early breast cancer (EBC). The aim of this study was to incorporate the prognostic effect of KI67 status in a new version (v3), and compare performance with the Predict model that includes HER2 status (v2). METHODS: The validation study was based on 1,726 patients with EBC treated in Nottingham between 1989 and 1998. KI67 positivity for PREDICT is defined as >10% of tumour cells staining positive. ROC curves were constructed for Predict models with (v3) and without (v2) KI67 input. Comparison was made using the method of DeLong. RESULTS: In 1274 ER+ patients the predicted number of events at 10 years increased from 196 for v2 to 204 for v3 compared to 221 observed. The area under the ROC curve (AUC) improved from 0.7611 to 0.7676 (p=0.005) in ER+ patients and from 0.7546 to 0.7595 (p=0.0008) in all 1726 patients (ER+ and ER-). CONCLUSION: Addition of KI67 to PREDICT has led to a statistically significant improvement in the model performance for ER+ patients and will aid clinical decision making in these patients. Further studies should determine whether other markers including gene expression profiling provide additional prognostic information to that provided by PREDICT.SEARCH was funded through a programme grant from Cancer Research UK (C490/A10124) and this work is supported by the UK National Institute for Health Research Biomedical Research Centre at the University of Cambridge.This is the final version of the article. It first appeared from BioMed Central via http://dx.doi.org/10.1186/1471-2407-14-90

    Contribution of regional aerosol nucleation to low-level CCN in an Amazonian deep convective environment: results from a regionally nested global model

    Get PDF
    Global model studies and observations have shown that downward transport of aerosol nucleated in the free troposphere is a major source of cloud condensation nuclei (CCN) to the global boundary layer. In Amazonia, observations show that this downward transport can occur during strong convective activity. However, it is not clear from these studies over what spatial scale this cycle of aerosol formation and downward supply of CCN is occurring. Here, we aim to quantify the extent to which the supply of aerosol to the Amazonian boundary layer is generated from nucleation within a 1000 km regional domain or from aerosol produced further afield and the effectiveness of the transport by deep convection. We run the atmosphere-only configuration of the HadGEM3 climate model incorporating a 440 km × 1080 km regional domain over Amazonia with 4 km resolution. Simulations were performed over several diurnal cycles of convection. Below 2 km altitude in the regional domain, our results show that new particle formation within the regional domain accounts for only between 0.2 % and 3.4 % of all Aitken and accumulation mode aerosol particles, whereas nucleation that occurred outside the domain (in the global model) accounts for between 58 % and 81 %. The remaining aerosol is primary in origin. Above 10 km, the regional-domain nucleation accounts for up to 66 % of Aitken and accumulation mode aerosol, but over several days very few of these particles nucleated above 10 km in the regional domain are transported into the boundary layer within the 1000 km region, and in fact very little air is mixed that far down. Rather, particles transported downwards into the boundary layer originated from outside the regional domain and entered the domain at lower altitudes. Our model results show that CCN entering the Amazonian boundary layer are transported downwards gradually over multiple convective cycles on scales much larger than 1000 km. Therefore, on a 1000 km scale in the model (approximately one-third the size of Amazonia), trace gas emission, new particle formation, transport and CCN production do not form a “closed loop” regulated by the biosphere. Rather, on this scale, long-range transport of aerosol is a much more important factor controlling CCN in the boundary layer
    • …
    corecore