901 research outputs found
A variant form of acute reversible cardiomyopathy: a case report
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens
Prediction of the Caspian Sea level using ECMWF seasonal forecasts and reanalysis
This article is made available through the Brunel Open Access Publishing Fund. This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.The hydrological budget of the Caspian Sea (CS) is investigated using the European Centre for Medium-Range Weather Forecasts interim reanalysis (ERAi) and seasonal forecast (FCST) data with the aim of predicting the Caspian Sea Level (CSL) some months ahead. Precipitation and evaporation are used. After precipitation events over the Volga River, the discharge (Volga River discharge (VRD)) follows with delays, which are parameterized. The components of the water budget from ERAi and FCSTs are integrated to obtain time series of the CSL. Observations of the CSL and the VRD are used for comparison and tuning. The quality of ERAi data is sufficiently good to calculate the time variability of the CSL with a satisfactory accuracy. Already the storage of water within the Volga Basin allows forecasts of the CSL a few months ahead, and using the FCSTs of precipitation improves the CSL forecasts. The evaporation in the seasonal forecasts is deficient due to unrealistic sea surface temperatures over the CS. Impacts of different water budget terms on the CSL variability are shown by a variety of validation tools. The importance of precipitation anomalies over the catchment of the Volga River is confirmed, but also impacts from the two southern rivers (Sefidrud and Kura River) and the evaporation over the CS become obvious for some periods. When pushing the FCSTs beyond the limits of the seasonal FCSTs to 1 year, considerable forecast skill can still be found. Validating only FCSTs by the present approach, which show the same trend as one based on a statistical method, significantly enhances the skill scores
Decreasing intensity of open-ocean convection in the Greenland and Iceland seas
The airâsea transfer of heat and fresh water plays a critical role in the global climate system. This is particularly true for the Greenland and Iceland seas, where these fluxes drive ocean convection that contributes to Denmark Strait overflow water, the densest component of the lower limb of the Atlantic Meridional Overturning Circulation (AMOC). Here we show that the wintertime retreat of sea ice in the region, combined with different rates of warming for the atmosphere and sea surface of the Greenland and Iceland seas, has resulted in statistically significant reductions of approximately 20% in the magnitude of the winter airâsea heat fluxes since 1979. We also show that modes of climate variability other than the North Atlantic Oscillation (NAO) are required to fully characterize the regional airâsea interaction. Mixed-layer model simulations imply that further decreases in atmospheric forcing will exceed a threshold for the Greenland Sea whereby convection will become depth limited, reducing the ventilation of mid-depth waters in the Nordic seas. In the Iceland Sea, further reductions have the potential to decrease the supply of the densest overflow waters to the AMOC
Wake response to an ocean-feedback mechanism: Madeira Island case study
This discussion focused on the numerical study of a wake episode. The Weather
Research and Forecasting model was used in a downscale mode. The current
literature focuses the discussion on the adiabatic dynamics of atmospheric
wakes. Changes in mountain height and consequently on its relation to the
atmospheric inversion layer should explain the shift in wake regimes: from a
'strong-wake' to a 'weak-wake' scenario. Nevertheless, changes in SST
variability can also induce similar regime shifts. Increase in evaporation,
contributes to increase convection and thus to an uplift of the stratified
atmospheric layer, above the critical height, with subsequent internal gravity
wave activity.Comment: Under review proces
Moisture transport by Atlantic tropical cyclones onto the North American continent
Tropical Cyclones (TCs) are an important source of freshwater for the North American continent. Many studies have tried to estimate this contribution by identifying TC-induced precipitation events, but few have explicitly diagnosed the moisture fluxes across continental boundaries. We design a set of attribution schemes to isolate the column-integrated moisture fluxes that are directly associated with TCs and to quantify the flux onto the North American Continent due to TCs. Averaged over the 2004â2012 hurricane seasons and integrated over the western, southern and eastern coasts of North America, the seven schemes attribute 7 to 18 % (mean 14 %) of total net onshore flux to Atlantic TCs. A reduced contribution of 10 % (range 9 to 11 %) was found for the 1980â2003 period, though only two schemes could be applied to this earlier period. Over the whole 1980â2012 period, a further 8 % (range 6 to 9 % from two schemes) was attributed to East Pacific TCs, resulting in a total TC contribution of 19 % (range 17 to 22 %) to the ocean-to-land moisture transport onto the North American continent between May and November. Analysis of the attribution uncertainties suggests that incorporating details of individual TC size and shape adds limited value to a fixed radius approach and TC positional errors in the ERA-Interim reanalysis do not affect the results significantly, but biases in peak wind speeds and TC sizes may lead to underestimates of moisture transport. The interannual variability does not appear to be strongly related to the El Nino-Southern Oscillation phenomenon
Anatomy of Indian heatwaves
India suffers from major heatwaves during March-June. The rising trend of number of intense heatwaves in recent decades has been vaguely attributed to global warming. Since the heat waves have a serious effect on human mortality, root causes of these heatwaves need to be clarified. Based on the observed patterns and statistical analyses of the maximum temperature variability, we identified two types of heatwaves. The first-type of heatwave over the north-central India is found to be associated with blocking over the North Atlantic. The blocking over North Atlantic results in a cyclonic anomaly west of North Africa at upper levels. The stretching of vorticity generates a Rossby wave source of anomalous Rossby waves near the entrance of the African Jet. The resulting quasi-stationary Rossby wave-train along the Jet has a positive phase over Indian subcontinent causing anomalous sinking motion and thereby heatwave conditions over India. On the other hand, the second-type of heatwave over the coastal eastern India is found to be due to the anomalous Matsuno-Gill response to the anomalous cooling in the Pacific. The Matsuno-Gill response is such that it generates northwesterly anomalies over the landmass reducing the land-sea breeze, resulting in heatwaves
Mechanisms driving variability in the ocean forcing of Pine Island Glacier
Pine Island Glacier (PIG) terminates in a rapidly melting ice shelf, and ocean circulation and temperature are implicated in the retreat and growing contribution to sea level rise of PIG and nearby glaciers. However, the variability of the ocean forcing of PIG has been poorly constrained due to a lack of multi-year observations. Here we show, using a unique record close to the Pine Island Ice Shelf (PIIS), that there is considerable oceanic variability at seasonal and interannual timescales, including a pronounced cold period from October 2011 to May 2013. This variability can be largely explained by two processes: cumulative ocean surface heat fluxes and sea ice formation close to PIIS; and interannual reversals in ocean currents and associated heat transport within Pine Island Bay, driven by a combination of local and remote forcing. Local atmospheric forcing therefore plays an important role in driving oceanic variability close to PIIS
Recommended from our members
Enhanced seasonal forecast skill following stratospheric sudden warmings
Advances in seasonal forecasting have brought widespread
socio-economic benefits. However, seasonal forecast skill
in the extratropics is relatively modest, prompting the
seasonal forecasting community to search for additional
sources of predictability. For over a decade it has been
suggested that knowledge of the state of the stratosphere
can act as a source of enhanced seasonal predictability; long-lived circulation anomalies in the lower stratosphere that follow stratospheric sudden warmings are associated with circulation anomalies in the troposphere that can last up to two months. Here, we show by performing retrospective
ensemble model forecasts that such enhanced predictability
can be realized in a dynamical seasonal forecast system with
a good representation of the stratosphere. When initialized at the onset date of stratospheric sudden warmings, the model forecasts faithfully reproduce the observed mean tropospheric conditions in the months following the stratospheric sudden warmings. Compared with an equivalent set of forecasts that are not initialized during stratospheric sudden warmings, we document enhanced forecast skill for atmospheric circulation patterns, surface temperatures over northern Russia and eastern Canada and North Atlantic precipitation. We suggest
that seasonal forecast systems initialized during stratospheric sudden warmings are likely to yield significantly greater forecast skill in some regions
West Antarctic ice loss influenced by internal climate variability and anthropogenic forcing
Recent ice loss from the West Antarctic Ice Sheet has been caused by ocean melting of ice shelves in the Amundsen Sea.
Eastward wind anomalies at the shelf break enhance the import of warm Circumpolar Deep Water onto the Amundsen Sea
continental shelf, which creates transient melting anomalies with an approximately decadal period. No anthropogenic influence on this process has been established. Here, we combine observations and climate model simulations to suggest that increased greenhouse gas forcing caused shelf-break winds to transition from mean easterlies in the 1920s to the near-zero mean zonal winds of the present day. Strong internal climate variability, primarily linked to the tropical Pacific, is superimposed on this forced trend. We infer that the Amundsen Sea experienced decadal ocean ariability throughout the twentieth century, with warm anomalies gradually becoming more prevalent, offering a credible explanation for the ongoing ice loss. Existing climate model projections show that strong future greenhouse gas forcing creates persistent mean westerly shelf-break winds by 2100, suggesting a further enhancement of warm ocean anomalies. These wind changes are weaker under a scenario in which greenhouse gas concentrations are stabilized
- âŠ