149 research outputs found

    Understanding, Interpreting and Answering the Question of What Is Being Properly

    Get PDF
    We have to master six propositions and judges, which are connected each other tightly, in the process of understanding, interpreting and answering the question of what is being properly. They are :1) Being is the representative of all converted forms of the verb of be, and further the representative of all English words; 2) words are the representative of languages; 3) languages are one of the main ways in materializing the human thinking and its results, that is, languages are one of the main ways of expressing the processes of human thinking and its results; 4) the processes of human thinking is the process of subjective disposition on objects, the results of human thinking are the results of human subjective dispositions on objects; 5) subjective dispositions are the processes of humans dispositions on objects,which include the results of human subjective dispositions previously, from multi-aspects, multi-strata, multi-disciplines, in human minds, and the subjective dispositions are the contents of the activities of human minds; 6) the true function and aim of raising the question of what is being continually from ancient Greece to now by Occidental scholars is that they want to know what is subjective dispositions and the relationship between subjective dispositions and their linguistic expressions

    Human Pose Estimation using Global and Local Normalization

    Full text link
    In this paper, we address the problem of estimating the positions of human joints, i.e., articulated pose estimation. Recent state-of-the-art solutions model two key issues, joint detection and spatial configuration refinement, together using convolutional neural networks. Our work mainly focuses on spatial configuration refinement by reducing variations of human poses statistically, which is motivated by the observation that the scattered distribution of the relative locations of joints e.g., the left wrist is distributed nearly uniformly in a circular area around the left shoulder) makes the learning of convolutional spatial models hard. We present a two-stage normalization scheme, human body normalization and limb normalization, to make the distribution of the relative joint locations compact, resulting in easier learning of convolutional spatial models and more accurate pose estimation. In addition, our empirical results show that incorporating multi-scale supervision and multi-scale fusion into the joint detection network is beneficial. Experiment results demonstrate that our method consistently outperforms state-of-the-art methods on the benchmarks.Comment: ICCV201

    3D Quantitative Damage Characterization in the Coating of a Metal Substrate with Terahertz Waves

    Get PDF
    In this study, terahertz (THz) reflective imaging is applied to characterize damage in the coating on metal substrates. The coating was initially scratched, and after aging, different damage mechanisms have occurred. Since the coating is optically thin (compared to the wavelengths within the THz spectrum), the THz echoes will partially or totally overlap, which makes it difficult to reconstruct the damaged coating structure. THz frequency-wavelet domain deconvolution is applied to resolve the overlapping echoes. Based on the observed features in the deconvoluted THz signals, three types of damage, including corrosion, the appearance of blisters and delamination, are successfully identified. The corrosion area is located in the middle of the scratch, and the delamination occurs around the scratch. In the blister area, no delamination is observed, but the swelling of the coating is clearly revealed. Moreover, quantitative information in depth is also obtained by analyzing the deconvoluted data. The thickness of the delamination and the thickness of the coating in both the normal (undamaged) and blister areas can be calculated. 3D imaging results shown in Fig. 1 clearly exhibit the thickness distribution across the whole coating plane, which also highlights the features of the different damage mechanisms

    On hydrodynamic characteristics of transient harbor resonance excited by double solitary waves

    Get PDF
    The harbor resonance triggered by double solitary waves (DSWs) with different wave parameters (including various wave heights and relative separation distances) is simulated based on the fully nonlinear Boussinesq model, FUNWAVE-TVD. A long and narrow harbor with different topographies is adopted. In the current study, effects of incident wave height, relative separation distance and bottom profile on hydrodynamic characteristics related to the transient oscillations are mainly investigated. The hydrodynamic characteristics considered include the evolution of the maximum free-surface elevation, the maximum runup, the wave energy distribution and the total wave energy inside the harbor. Results show that Green's law can accurately estimate the evolution of the maximum free-surface elevation in most part of the harbor area. The impacts of the topography on the maximum runup exhibit a strong dependence on the incident wave height. The smaller mean water depth inside the harbor, the larger relative separation distance, and the higher incident wave height tend to result in greater uniformity of the wave energy distribution. The normalized total wave energy is always shown to decrease gradually with the incident wave height, and to increase remarkably at first and then decrease slightly with the increase of the mean water depth.<br/

    Topographic influences on transient harbor oscillations excited by N-waves

    Get PDF
    The main objective of this paper is to comprehensively study influences of the variation of the bottom profile inside the harbor on the transient harbor oscillations excited by normally-incident N-waves. The specific physical phenomena investigated consist of wave profile evolution, maximum runup, relative wave energy distribution and total wave energy inside the harbor. A series of numerical experiments are implemented using a fully nonlinear Boussinesq model, FUNWAVE-TVD. Results show that when the harbor is subjected to the leading-elevation N-waves (LEN waves), the evolution of the maximum free surface elevation during the wave shoaling process inside the harbor coincides well with Green's law overall. When the incident wave amplitude is small, the maximum runup inside the harbor is almost only determined by the incident wave amplitude. As the incident wave amplitude increases, effects of the bottom profile on the maximum runup closely depend on both the incident wave type and amplitude. As the mean water depth inside the harbor decreases, the relative wave energy distribution tends to become more uniform, regardless of the incident wave amplitude and type. Finally, the variation trend of the total wave energy with the bottom profile is found to depend on the incident wave amplitude

    Investigation on the effects of Bragg reflection on harbor oscillations

    Get PDF
    Periodic undulating topographies (such as sandwaves and sandbars) are very common in coastal and estuarine areas. Normally incident water surface waves propagating from open sea to coastal areas may interact strongly with such topographies. The wave reflection by the periodic undulating topography can be significantly amplified when the surface wavelength is approximately twice the wavelength of the bottom undulations, which is often called as Bragg resonant reflection. Although the investigations on the hydrodynamic characteristics related to Bragg reflection of a region of undulating topography have been widely implemented, the effects of Bragg reflection on harbors have not yet been studied. Bragg resonant reflection can effectively reduce the incident waves. Meanwhile, however, it can also significantly hinder the wave radiation from the harbor entrance to the open sea. Whether Bragg reflection can be utilized as a potential measure to alleviate harbor oscillations is unknown. In the present study, Bragg reflection and their interactions with the harbor are simulated using a fully nonlinear Boussinesq model, FUNWAVE 2.0. For the purpose, an elongated harbor with constant depth is considered, and a series of sinusoidal bars with various amplitudes and numbers are deployed outside the harbor. The incident waves considered in this paper include regular long waves and bichromatic short wave groups. It is revealed for the first time that for both kinds of incident waves, Bragg resonant reflection can significantly alleviate harbor resonance. The influences of the number and the amplitude of sinusoidal bars on the mitigation effect of harbor resonance and on the optimal wavelength of sinusoidal bars that can achieve the best mitigation effect are comprehensively investigated, and it is found that the former two factors have remarkable influences on the latter two parameters. The present research provides a new option for the mitigation of harbor oscillations via changing the bottom profile, which is feasible as long as the navigating depth is guaranteed.</p

    Numerical investigation of harbor oscillations induced by focused transient wave groups

    Get PDF
    Focused wave groups are traveling waves characterized by extremely-large transient wave amplitudes and very short durations. These waves usually cause serious damage to marine/offshore structures and coastal infrastructures, and can even result in human casualties (Nikolkina and Didenkulova, 2011). The studies on natural disasters related to the focused wave groups near the coastal zone have been mostly confined to wave evolution over beaches, wave runup, overtopping, and their impact forces acting on the coastal infrastructures (e.g., the seawall and the circular cylinder); the influence of focused transient wave groups on harbors has not yet been studied. In this study, the generation and propagation of focused transient wave groups and their interactions with the harbor are simulated using a fully nonlinear Boussinesq model, FUNWAVE 2.0. To this end, four elongated harbors with constant depth and a series of focused wave groups with various focused wave amplitudes, spectral width parameters, and incident directions are considered. Based on the Morlet wavelet transform and discrete Fourier transform techniques, the capability of focused transient wave groups to trigger the harbor resonance phenomenon is revealed for the first time. Subsequently, the influences of spectral width parameter, incident wave direction, and resonant mode on different resonant wave parameters (including maximum runup and resonant intensity of various resonant modes inside a harbor) are comprehensively investigated, and it is found that these three factors have significant effects on resonant wave parameters.</p
    • …
    corecore