15,985 research outputs found

    Transport properties and structures of vortex matter in layered superconductors

    Full text link
    In this paper we analyze the structure, phase transitions and some transport properties of the vortex system when the external magnetic field lies parallel to the planes in layered superconductors. We show that experimental results for resistivity are qualitatively consistent with numerical simulations that describe the melting of a commensurate rotated lattice. However for some magnetic fields, the structure factor indicates the occurrence of smectic peaks at an intermediate temperature regime.Comment: 8 pages, 8 eps figure

    SPH simulations of the chemical evolution of bulges

    Full text link
    We have implemented a chemical evolution model on the parallel AP3M+SPH DEVA code which we use to perform high resolution simulations of spiral galaxy formation. It includes feedback by SNII and SNIa using the Qij matrix formalism. We also include a diffusion mechanism that spreads newly introduced metals. The gas cooling rate depends on its specific composition. We study the stellar populations of the resulting bulges finding a potential scenario where they seem to be composed of two populations: an old, metal poor, α\alpha-enriched population, formed in a multiclump scenario at the beginning of the simulation and a younger one, formed by slow accretion of satellites or gas, possibly from the disk due to instabilities.Comment: 2 pages, 3 figures. Proceedings of IAUS 245 "Formation and Evolution of Galaxy Bulges

    Nanowires: A route to efficient thermoelectric devices

    Full text link
    Miniaturization of electronic devices aims at manufacturing ever smaller products, from mesoscopic to nanoscopic sizes. This trend is challenging because the increased levels of dissipated power demands a better understanding of heat transport in small volumes. A significant amount of the consumed energy is transformed into heat and dissipated to the environment. Thermoelectric materials offer the possibility to harness dissipated energy and make devices less energy-demanding. Heat-to-electricity conversion requires materials with a strongly suppressed thermal conductivity but still high electronic conduction. Nanowires can meet nicely these two requirements because enhanced phonon scattering at the surface and defects reduces the lattice thermal conductivity while electric conductivity is not deteriorated, leading to an overall remarkable thermoelectric efficiency. Therefore, nanowires are regarded as a promising route to achieving valuable thermoelectric materials at the nanoscale. In this paper, we present an overview of key experimental and theoretical results concerning the thermoelectric properties of nanowires. The focus of this review is put on the physical mechanisms by which the efficiency of nanowires can be improved. Phonon scattering at surfaces and interfaces, enhancement of the power factor by quantum effects and topological protection of electron states to prevent the degradation of electrical conductivity in nanowires are thoroughly discussed

    Interactions and thermoelectric effects in a parallel-coupled double quantum dot

    Get PDF
    We investigate the nonequilibrium transport properties of a double quantum dot system connected in parallel to two leads, including intradot electron-electron interaction. In the absence of interactions the system supports a bound state in the continuum. This state is revealed as a Fano antiresonance in the transmission when the energy levels of the dots are detuned. Using the Keldysh nonequilibrium Green's function formalism, we find that the occurrence of the Fano antiresonance survives in the presence of Coulomb repulsion. We give precise predictions for the experimental detection of bound states in the continuum. First, we calculate the differential conductance as a function of the applied voltage and the dot level detuning and find that crossing points in the diamond structure are revealed as minima due to the transmission antiresonances. Second, we determine the thermoelectric current in response to an applied temperature bias. In the linear regime, quantum interference gives rise to sharp peaks in the thermoelectric conductance. Remarkably, we find interaction induced strong current nonlinearities for large thermal gradients that may lead to several nontrivial zeros in the thermocurrent. The latter property is especially attractive for thermoelectric applications.Comment: 9 pages, 8 figure

    On p_T-broadening of high energy partons associated with the LPM effect in a finite-volume QCD medium

    Full text link
    We study the contributions from radiation to pp_{\perp}-broadening of a high energy parton traversing a QCD medium with a finite length LL. The interaction between the parton and the medium is described by decorrelated static multiple scattering. Amplitudes of medium-induced gluon emission and parton self-energy diagrams are evaluated in the soft gluon limit in the BDMPS formalism. We find both the double-logarithmic correction from incoherent scattering, which is parametrically the same as that in single scattering, and the logarithmic correction from the LPM effect. Therefore, we expect a parametrically large correction from radiation to the medium-induced pp_\perp-broadening in perturbative QCD.Comment: 19 pages, focusing only on calculations about the medium-induced diagrams, origin for double-log reinterpreted, final version to appear in JHE

    Spin- and entanglement-dynamics in the central spin model with homogeneous couplings

    Full text link
    We calculate exactly the time-dependent reduced density matrix for the central spin in the central-spin model with homogeneous Heisenberg couplings. Therefrom, the dynamics and the entanglement entropy of the central spin are obtained. A rich variety of behaviors is found, depending on the initial state of the bath spins. For an initially unpolarized unentangled bath, the polarization of the central spin decays to zero in the thermodynamic limit, while its entanglement entropy becomes maximal. On the other hand, if the unpolarized environment is initially in an eigenstate of the total bath spin, the central spin and the entanglement entropy exhibit persistent monochromatic large-amplitude oscillations. This raises the question to what extent entanglement of the bath spins prevents decoherence of the central spin.Comment: 8 pages, 2 figures, typos corrected, published versio

    Chiral corrections to the SU(2)×SU(2)SU(2)\times SU(2) Gell-Mann-Oakes-Renner relation

    Get PDF
    The next to leading order chiral corrections to the SU(2)×SU(2)SU(2)\times SU(2) Gell-Mann-Oakes-Renner (GMOR) relation are obtained using the pseudoscalar correlator to five-loop order in perturbative QCD, together with new finite energy sum rules (FESR) incorporating polynomial, Legendre type, integration kernels. The purpose of these kernels is to suppress hadronic contributions in the region where they are least known. This reduces considerably the systematic uncertainties arising from the lack of direct experimental information on the hadronic resonance spectral function. Three different methods are used to compute the FESR contour integral in the complex energy (squared) s-plane, i.e. Fixed Order Perturbation Theory, Contour Improved Perturbation Theory, and a fixed renormalization scale scheme. We obtain for the corrections to the GMOR relation, δπ\delta_\pi, the value δπ=(6.2,±1.6)\delta_\pi = (6.2, \pm 1.6)%. This result is substantially more accurate than previous determinations based on QCD sum rules; it is also more reliable as it is basically free of systematic uncertainties. It implies a light quark condensate 2GeV=(267±5MeV)3 \simeq \equiv |_{2\,\mathrm{GeV}} = (- 267 \pm 5 MeV)^3. As a byproduct, the chiral perturbation theory (unphysical) low energy constant H2rH^r_2 is predicted to be H2r(νχ=Mρ)=(5.1±1.8)×103H^r_2 (\nu_\chi = M_\rho) = - (5.1 \pm 1.8)\times 10^{-3}, or H2r(νχ=Mη)=(5.7±2.0)×103H^r_2 (\nu_\chi = M_\eta) = - (5.7 \pm 2.0)\times 10^{-3}.Comment: A comment about the value of the strong coupling has been added at the end of Section 4. No change in results or conslusion

    Lattice thermal conductivity of graphene nanostructures

    Get PDF
    Non-equilibrium molecular dynamics is used to investigate the heat current due to the atomic lattice vibrations in graphene nanoribbons and nanorings under a thermal gradient. We consider a wide range of temperature, nanoribbon widths up to 6nm and the effect of moderate edge disorder. We find that narrow graphene nanorings can efficiently suppress the lattice thermal conductivity at low temperatures (~100K), as compared to nanoribbons of the same width. Remarkably, rough edges do not appear to have a large impact on lattice energy transport through graphene nanorings while nanoribbons seem more affected by imperfections. Furthermore, we demonstrate that the effects of hydrogen-saturated edges can be neglected in these graphene nanostructures

    Up and down quark masses from Finite Energy QCD sum rules to five loops

    Full text link
    The up and down quark masses are determined from an optimized QCD Finite Energy Sum Rule (FESR) involving the correlator of axial-vector divergences, to five loop order in Perturbative QCD (PQCD), and including leading non-perturbative QCD and higher order quark mass corrections. This FESR is designed to reduce considerably the systematic uncertainties arising from the (unmeasured) hadronic resonance sector, which in this framework contributes less than 3-4% to the quark mass. This is achieved by introducing an integration kernel in the form of a second degree polynomial, restricted to vanish at the peak of the two lowest lying resonances. The driving hadronic contribution is then the pion pole, with parameters well known from experiment. The determination is done in the framework of Contour Improved Perturbation Theory (CIPT), which exhibits a very good convergence, leading to a remarkably stable result in the unusually wide window s0=1.04.0GeV2s_0 = 1.0 - 4.0 {GeV}^2, where s0s_0 is the radius of the integration contour in the complex energy (squared) plane. The results are: mu(Q=2GeV)=2.9±0.2m_u(Q= 2 {GeV}) = 2.9 \pm 0.2 MeV, md(Q=2GeV)=5.3±0.4m_d(Q= 2 {GeV}) = 5.3 \pm 0.4 MeV, and (mu+md)/2=4.1±0.2(m_u + m_d)/2 = 4.1 \pm 0.2 Mev (at a scale Q=2 GeV).Comment: Additional references to lattice QCD results have been adde
    corecore