311 research outputs found

    A semantic web service-based architecture for the interoperability of e-government services

    Get PDF
    We propose a semantically-enhanced architecture to address the issues of interoperability and service integration in e-government web information systems. An architecture for a life event portal based on Semantic Web Services (SWS) is described. The architecture includes loosely-coupled modules organized in three distinct layers: User Interaction, Middleware and Web Services. The Middleware provides the semantic infrastructure for ontologies and SWS. In particular a conceptual model for integrating domain knowledge (Life Event Ontology), application knowledge (E-government Ontology) and service description (Service Ontology) is defined. The model has been applied to a use case scenario in e-government and the results of a system prototype have been reported to demonstrate some relevant features of the proposed approach

    Mercury's Weather-Beaten Surface: An Examination of the Relevant Processes Through Comparisons and Contrasts with the Moon and Asteroids

    Get PDF
    We examine global color properties of Mercury and their correlations to the predicted trends due to particle bombardment and thermal processing. Color ratio and spectral slope analyzes are interpreted relative to lunar and asteroid studies

    Seeing Galaxies Through Thick and Thin: II. Direct Measures of Extinction in Spiral Disks Through Spectroscopy of Overlapping Galaxies

    Full text link
    We use slit spectroscopy of overlapping pairs of galaxies to directly determine the extinction in disks of foreground spiral galaxies. The Doppler shifts of pair members are determined via cross-correlation and their relative correlation amplitudes are used to separate their contributions to the combined spectra in regions of overlap. This spectroscopic approach is less subject to stringent symmetry constraints than our previous purely photometric analyses. Extinctions of foreground members were obtained for 6 of the candidates in our sample of 18 mostly spiral/spiral pairs, when the signal to noise and velocity difference were suitable. In agreement with our previous imaging results, we find that the extinction in interarm regions is very modest, typically A_B=0.1 mag (corrected to face on), while spiral arms exhibit higher extinctions of 0.3 mag.Comment: 14 figures, 3 tables, Accepted to Astrophysical Journa

    Magpie: towards a semantic web browser

    Get PDF
    Web browsing involves two tasks: finding the right web page and then making sense of its content. So far, research has focused on supporting the task of finding web resources through ‘standard’ information retrieval mechanisms, or semantics-enhanced search. Much less attention has been paid to the second problem. In this paper we describe Magpie, a tool which supports the interpretation of web pages. Magpie offers complementary knowledge sources, which a reader can call upon to quickly gain access to any background knowledge relevant to a web resource. Magpie automatically associates an ontologybased semantic layer to web resources, allowing relevant services to be invoked within a standard web browser. Hence, Magpie may be seen as a step towards a semantic web browser. The functionality of Magpie is illustrated using examples of how it has been integrated with our lab’s web resources

    Major Merger Galaxy Pairs at z = 0: Dust Properties and Companion Morphology

    Get PDF
    We present an analysis of dust properties of a sample of close major-merger galaxy pairs selected by K_s magnitude and redshift. The pairs represent the two populations of spiral–spiral (S+S) and mixed morphology spiral–elliptical (S+E). The Code Investigating GALaxy Emission software is used to fit dust models to the Two Micron All Sky Survey, Wide-Field Infrared Survey Explorer, and Herschel flux density measurements, and to derive the parameters describing the polycyclic aromatic hydrocarbons contribution, interstellar radiation field, and photodissociation regions. Model fits verify our previous Spitzer Space Telescope analysis that S+S and S+E pairs do not have the same level of enhancement of star formation and differ in dust composition. The spirals of mixed-morphology galaxy pairs do not exhibit the enhancements in interstellar radiation field and therefore dust temperature for spirals in S+S pairs in contrast to what would be expected according to standard models of gas redistribution due to encounter torques. This suggests the importance of the companion environment/morphology in determining the dust properties of a spiral galaxy in a close major-merger pair

    CO observations of major merger pairs at z=0: Molecular gas mass and star formation

    Full text link
    We present CO observations of 78 spiral galaxies in local merger pairs. These galaxies representa subsample of a Ks-band selected sample consisting of 88 close major-merger pairs (HKPAIRs), 44 spiral-spiral (S+S) pairs and 44 spiral-elliptical (S+E) pairs, with separation <20h1<20 h^{-1} kpc and mass ratio <2.5. For all objects, the star formation rate (SFR) and dust mass were derived from HERSCHEL PACS and SPIRE data, and the atomic gas mass, MHI, from the Green Bank Telescope HI observations. The complete data set allows us to study the relation between the gas (atomic and molecular) mass, dust mass and SFR in merger galaxies. We derive the molecular gas fraction (MH2/M*), molecular-to-atomic gas mass ratio (MH2/MHI), gas-to-dust mass ratio and SFE (=SFR/MH2) and study their dependences on pair type (S+S compared to S+E), stellar mass and the presence of morphological interaction signs. We find an overall moderate enhancements (~2x) in both molecular gas fraction (MH2/M*), and molecular-to-atomic gas ratio (MH2/MHI) for star-forming galaxies in major-merger pairs compared to non-interacting comparison samples, whereas no enhancement was found for the SFE nor for the total gas mass fraction (MHI+MH2)/M*. When divided into S+S and S+E, low mass and high mass, and with and without interaction signs, there is a small difference in SFE, moderate difference in MH2/M*, and strong differences in MH2/MHI between subsamples. For MH2/MHI, the difference between S+S and S+E subsamples is 0.69+-0.16 dex and between pairs with and without interaction signs is 0.53+-0.18 dex. Together, our results suggest (1) star formation enhancement in close major-merger pairs occurs mainly in S+S pairs after the first close encounter (indicated by interaction signs) because the HI gas is compressed into star-forming molecular gas by the tidal torque; (2) this effect is much weakened in the S+E pairs.Comment: Accepted in A&A, 19 page
    corecore