50 research outputs found
Gamma rays from molecular clouds
It is believed that the observed diffuse gamma ray emission from the galactic
plane is the result of interactions between cosmic rays and the interstellar
gas. Such emission can be amplified if cosmic rays penetrate into dense
molecular clouds. The propagation of cosmic rays inside a molecular cloud has
been studied assuming an arbitrary energy and space dependent diffusion
coefficient. If the diffusion coefficient inside the cloud is significantly
smaller compared to the average one derived for the galactic disk, the observed
gamma ray spectrum appears harder than the cosmic ray spectrum, mainly due to
the slower penetration of the low energy particles towards the core of the
cloud. This may produce a great variety of gamma ray spectra.Comment: Proceeding of "The multi messenger approach to high energy gamma ray
sources", Barcelona, June 200
UHECR Acceleration in Dark Matter Filaments of Cosmological Structure Formation
A mechanism for proton acceleration to ~10^21eV is suggested. It may operate
in accretion flows onto thin dark matter filaments of cosmic structure
formation. The flow compresses the ambient magnetic field to strongly increase
and align it with the filament. Particles begin the acceleration by the ExB
drift with the accretion flow. The energy gain in the drift regime is limited
by the conservation of the adiabatic invariant p_perp^2/B. Upon approaching the
filament, the drift turns into the gyro-motion around the filament so that the
particle moves parallel to the azimuthal electric field. In this 'betatron'
regime the acceleration speeds up to rapidly reach the electrodynamic limit
for an accelerator with magnetic field and the orbit radius
(Larmor radius). The periodic orbit becomes unstable and the particle
slings out of the filament to the region of a weak (uncompressed) magnetic
field, which terminates the acceleration.
The mechanism requires pre-acceleration that is likely to occur in structure
formation shocks upstream or nearby the filament accretion flow. Previous
studies identify such shocks as efficient proton accelerators to a firm upper
limit ~10^19.5 eV placed by the catastrophic photo-pion losses. The present
mechanism combines explosive energy gain in its final (betatron) phase with
prompt particle release from the region of strong magnetic field. It is this
combination that allows protons to overcome both the photo-pion and the
synchrotron-Compton losses and therefore attain energy 10^21 eV. A requirement
on accelerator to reach a given E_max placed by the accelerator energy
dissipation \propto E_{max}^{2}/Z_0 due to the finite vacuum impedance Z_0 is
circumvented by the cyclic operation of the accelerator.Comment: 34 pages, 10 figures, to be published in JCA
Theory and Models of the Disc-Halo Connection
We review the evolution of the interstellar medium in disc galaxies, and
show, both analytically and by numerical 3D hydrodynamic simulations, that the
disc-halo connection is an essential ingredient in understanding the evolution
of star forming galaxies. Depending on the star formation rate of the
underlying gaseous disc, a galactic fountain is established. If the star
formation rate is sufficiently high and/or cosmic rays are well coupled to the
thermal plasma, a galactic wind will be formed and lead to a secular mass loss
of the galaxy. Such a wind leaves a unique imprint on the soft X-ray spectra in
edge-on galaxies, with delayed recombination being one of its distinctive
features. We argue that synthetic spectra, obtained from self-consistent
dynamical and thermal modelling of a galactic outflow, should be treated on an
equal footing as observed spectra. We show that it is thus possible to
successfully fit the spectrum of the starburst galaxy NGC 3079.Comment: 10 pages, 4 figures, Invited review for the proceedings of "The Role
of Disk-Halo Interaction in Galaxy Evolution: Outflow vs Infall?" (Ed. M.A.
de Avillez), in Espinho, Portugal, 18-22 August, 200
The Physics of Cluster Mergers
Clusters of galaxies generally form by the gravitational merger of smaller
clusters and groups. Major cluster mergers are the most energetic events in the
Universe since the Big Bang. Some of the basic physical properties of mergers
will be discussed, with an emphasis on simple analytic arguments rather than
numerical simulations. Semi-analytic estimates of merger rates are reviewed,
and a simple treatment of the kinematics of binary mergers is given. Mergers
drive shocks into the intracluster medium, and these shocks heat the gas and
should also accelerate nonthermal relativistic particles. X-ray observations of
shocks can be used to determine the geometry and kinematics of the merger. Many
clusters contain cooling flow cores; the hydrodynamical interactions of these
cores with the hotter, less dense gas during mergers are discussed. As a result
of particle acceleration in shocks, clusters of galaxies should contain very
large populations of relativistic electrons and ions. Electrons with Lorentz
factors gamma~300 (energies E = gamma m_e c^2 ~ 150 MeV) are expected to be
particularly common. Observations and models for the radio, extreme
ultraviolet, hard X-ray, and gamma-ray emission from nonthermal particles
accelerated in these mergers are described.Comment: 38 pages with 9 embedded Postscript figures. To appear in Merging
Processes in Clusters of Galaxies, edited by L. Feretti, I. M. Gioia, and G.
Giovannini (Dordrecht: Kluwer), in press (2001
Status of the GAMMA-400 Project
The preliminary design of the new space gamma-ray telescope GAMMA-400 for the
energy range 100 MeV - 3 TeV is presented. The angular resolution of the
instrument, 1-2{\deg} at E{\gamma} ~100 MeV and ~0.01^{\circ} at E{\gamma} >
100 GeV, its energy resolution ~1% at E{\gamma} > 100 GeV, and the proton
rejection factor ~10E6 are optimized to address a broad range of science
topics, such as search for signatures of dark matter, studies of Galactic and
extragalactic gamma-ray sources, Galactic and extragalactic diffuse emission,
gamma-ray bursts, as well as high-precision measurements of spectra of
cosmic-ray electrons, positrons, and nuclei.Comment: 6 pages, 1 figure, 1 table, submitted to Advances in Space Researc
Nonthermal radiation mechanisms
In this paper we review the possible radiation mechanisms for the observed
non-thermal emission in clusters of galaxies, with a primary focus on the radio
and hard X-ray emission. We show that the difficulty with the non-thermal,
non-relativistic Bremsstrahlung model for the hard X-ray emission, first
pointed out by Petrosian (2001) using a cold target approximation, is somewhat
alleviated when one treats the problem more exactly by including the fact that
the background plasma particle energies are on average a factor of 10 below the
energy of the non-thermal particles. This increases the lifetime of the
non-thermal particles, and as a result decreases the extreme energy
requirement, but at most by a factor of three. We then review the synchrotron
and so-called inverse Compton emission by relativistic electrons, which when
compared with observations can constrain the value of the magnetic field and
energy of relativistic electrons. This model requires a low value of the
magnetic field which is far from the equipartition value. We briefly review the
possibilities of gamma-ray emission and prospects for GLAST observations. We
also present a toy model of the non-thermal electron spectra that are produced
by the acceleration mechanisms discussed in an accompanying paper.Comment: 17 pages, 6 figures, accepted for publication in Space Science
Reviews, special issue "Clusters of galaxies: beyond the thermal view",
Editor J.S. Kaastra, Chapter 10; work done by an international team at the
International Space Science Institute (ISSI), Bern, organised by J.S.
Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke
Particle acceleration mechanisms
We review the possible mechanisms for production of non-thermal electrons
which are responsible for non-thermal radiation in clusters of galaxies. Our
primary focus is on non-thermal Bremsstrahlung and inverse Compton scattering,
that produce hard X-ray emission. We briefly review acceleration mechanisms and
point out that in most astrophysical situations, and in particular for the
intracluster medium, shocks, turbulence and plasma waves play a crucial role.
We consider two scenarios for production of non-thermal radiation. The first is
hard X-ray emission due to non-thermal Bremsstrahlung by nonrelativistic
particles. Non-thermal tails are produced by accelerating electrons from the
background plasma with an initial Maxwellian distribution. However, these tails
are accompanied by significant heating and they are present for a short time of
<10^6 yr, which is also the time that the tail will be thermalised. Such
non-thermal tails, even if possible, can only explain the hard X-ray but not
the radio emission which needs GeV or higher energy electrons. For these and
for production of hard X-rays by the inverse Compton model, we need the second
scenario where there is injection and subsequent acceleration of relativistic
electrons. It is shown that a steady state situation, for example arising from
secondary electrons produced from cosmic ray proton scattering by background
protons, will most likely lead to flatter than required electron spectra or it
requires a short escape time of the electrons from the cluster. An episodic
injection of relativistic electrons, presumably from galaxies or AGN, and/or
episodic generation of turbulence and shocks by mergers can result in an
electron spectrum consistent with observations but for only a short period of
less than one billion years.Comment: 22 pages, 5 figures, accepted for publication in Space Science
Reviews, special issue "Clusters of galaxies: beyond the thermal view",
Editor J.S. Kaastra, Chapter 11; work done by an international team at the
International Space Science Institute (ISSI), Bern, organised by J.S.
Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke