5 research outputs found

    Evaluation of epidermal growth factor receptor mutation status in serum DNA as a predictor of response to gefitinib (IRESSA)

    Get PDF
    The aim of this study was to evaluate the usefulness of EGFR mutation status in serum DNA as a means of predicting a benefit from gefitinib (IRESSA) therapy in Japanese patients with non-small cell lung cancer (NSCLC). We obtained pairs of tumour and serum samples from 42 patients treated with gefitinib. EGFR mutation status was determined by a direct sequencing method and by Scorpion Amplification Refractory Mutation System (ARMS) technology. EGFR mutations were detected in the tumour samples of eight patients and in the serum samples of seven patients. EGFR mutation status in the tumours and serum samples was consistent in 39 (92.9%) of the 42 pairs. EGFR mutations were strong correlations between both EGFR mutation status in the tumour samples and serum samples and objective response to gefitinib (P<0.001). Median progression-free survival time was significantly longer in the patients with EGFR mutations than in the patients without EGFR mutations (194 vs 55 days, P=0.016, in tumour samples; 174 vs 58 days, P=0.044, in serum samples). The results suggest that it is feasible to use serum DNA to detect EGFR mutation, and that it's potential as a predictor of response to, and survival on gefitinib is worthy of further evaluation

    UK 1-D regional velocity models by analysis of variance of P-wave travel times from local earthquakes

    Get PDF
    A method is presented for deriving 1-D velocity depth models from earthquake bulletin data. The models can be used as initial models for more advanced modelling techniques such as tomographic inversion. The method is useful when there is little or no refraction and long-range reflection survey data. The bulletin travel times are subjected to an analysis of variance, where they are separated into source, distance, and receiving station terms. The distance terms describe the variation of travel time with distance, and the associated trend lines allow 1-D velocity models for the crustal layers to be determined. The velocity models provide an average crustal model for the region derived from local data. This does not include superficial layers which are necessarily poorly determined. Earthquake bulletin P-wave data from propagation paths across three different regions of the UK are employed to illustrate the use of the technique
    corecore