10 research outputs found

    Atomic excitation during recollision-free ultrafast multi-electron tunnel ionization

    Full text link
    Modern intense ultrafast pulsed lasers generate an electric field of sufficient strength to permit tunnel ionization of the valence electrons in atoms. This process is usually treated as a rapid succession of isolated events, in which the states of the remaining electrons are neglected. Such electronic interactions are predicted to be weak, the exception being recollision excitation and ionization caused by linearly-polarized radiation. In contrast, it has recently been suggested that intense field ionization may be accompanied by a two-stage `shake-up' reaction. Here we report a unique combination of experimental techniques that enables us to accurately measure the tunnel ionization probability for argon exposed to 50 femtosecond laser pulses. Most significantly for the current study, this measurement is independent of the optical focal geometry, equivalent to a homogenous electric field. Furthermore, circularly-polarized radiation negates recollision. The present measurements indicate that tunnel ionization results in simultaneous excitation of one or more remaining electrons through shake-up. From an atomic physics standpoint, it may be possible to induce ionization from specific states, and will influence the development of coherent attosecond XUV radiation sources. Such pulses have vital scientific and economic potential in areas such as high-resolution imaging of in-vivo cells and nanoscale XUV lithography.Comment: 17 pages, 4 figures, original format as accepted by Nature Physic

    Controlling the shape of a quantum wavefunction

    Full text link
    The ability to control the shape and motion of quantum states(1,2) may lead to methods for bond-selective chemistry and novel quantum technologies, such as quantum computing. The classical coherence of laser light has been used to guide quantum systems into desired target states through interfering pathways(3-5). These experiments used the control of target properties-such as fluorescence from a dye solution(6), the current in a semiconductor(7,8) 8 Or the dissociation fraction of an excited molecule(9)-to infer control over the quantum state. Here we report a direct approach to coherent quantum control that allows us to actively manipulate the shape of an atomic electron's radial wavefunction, We use a computer-controlled laser to excite a coherent state in atomic caesium. The shape of the wavefunction is then measured(10) and the information fed back into the laser control system, which reprograms the optical field. The process is iterated until the measured shape of the wavefunction matches that of a target wavepacket, established at the start of the experiment. We find that, using a variation of quantum holography(11) to reconstruct the measured wavefunction, the quantum state can be reshaped to match the target within two iterations of the feedback loop.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62625/1/397233a0.pd

    Femtosecond Laser Pulses: Linear Properties, Manipulation, Generation and Measurement

    No full text

    Erratum: “Review of the National Ignition Campaign 2009-2012” [Phys. Plasmas 21, 020501 (2014)]

    No full text
    corecore