486 research outputs found

    Ionic high-pressure form of elemental boron

    Full text link
    Boron is an element of fascinating chemical complexity. Controversies have shrouded this element since its discovery was announced in 1808: the new 'element' turned out to be a compound containing less than 60-70 percent of boron, and it was not until 1909 that 99-percent pure boron was obtained. And although we now know of at least 16 polymorphs, the stable phase of boron is not yet experimentally established even at ambient conditions. Boron's complexities arise from frustration: situated between metals and insulators in the periodic table, boron has only three valence electrons, which would favour metallicity, but they are sufficiently localized that insulating states emerge. However, this subtle balance between metallic and insulating states is easily shifted by pressure, temperature and impurities. Here we report the results of high-pressure experiments and ab initio evolutionary crystal structure predictions that explore the structural stability of boron under pressure and, strikingly, reveal a partially ionic high-pressure boron phase. This new phase is stable between 19 and 89 GPa, can be quenched to ambient conditions, and has a hitherto unknown structure (space group Pnnm, 28 atoms in the unit cell) consisting of icosahedral B12 clusters and B2 pairs in a NaCl-type arrangement. We find that the ionicity of the phase affects its electronic bandgap, infrared adsorption and dielectric constants, and that it arises from the different electronic properties of the B2 pairs and B12 clusters and the resultant charge transfer between them.Comment: Published in Nature 453, 863-867 (2009

    Gravity waves and the LHC: Towards high-scale inflation with low-energy SUSY

    Get PDF
    It has been argued that rather generic features of string-inspired inflationary theories with low-energy supersymmetry (SUSY) make it difficult to achieve inflation with a Hubble scale H > m_{3/2}, where m_{3/2} is the gravitino mass in the SUSY-breaking vacuum state. We present a class of string-inspired supergravity realizations of chaotic inflation where a simple, dynamical mechanism yields hierarchically small scales of post-inflationary supersymmetry breaking. Within these toy models we can easily achieve small ratios between m_{3/2} and the Hubble scale of inflation. This is possible because the expectation value of the superpotential relaxes from large to small values during the course of inflation. However, our toy models do not provide a reasonable fit to cosmological data if one sets the SUSY-breaking scale to m_{3/2} < TeV. Our work is a small step towards relieving the apparent tension between high-scale inflation and low-scale supersymmetry breaking in string compactifications.Comment: 21+1 pages, 5 figures, LaTeX, v2: added references, v3: very minor changes, version to appear in JHE

    Matrix theory origins of non-geometric fluxes

    Full text link
    We explore the origins of non-geometric fluxes within the context of M theory described as a matrix model. Building upon compactifications of Matrix theory on non-commutative tori and twisted tori, we formulate the conditions which describe compactifications with non-geometric fluxes. These turn out to be related to certain deformations of tori with non-commutative and non-associative structures on their phase space. Quantization of flux appears as a natural consequence of the framework and leads to the resolution of non-associativity at the level of the unitary operators. The quantum-mechanical nature of the model bestows an important role on the phase space. In particular, the geometric and non-geometric fluxes exchange their properties when going from position space to momentum space thus providing a duality among the two. Moreover, the operations which connect solutions with different fluxes are described and their relation to T-duality is discussed. Finally, we provide some insights on the effective gauge theories obtained from these matrix compactifications.Comment: 1+31 pages, reference list update

    Is Our Universe Natural?

    Full text link
    It goes without saying that we are stuck with the universe we have. Nevertheless, we would like to go beyond simply describing our observed universe, and try to understand why it is that way rather than some other way. Physicists and cosmologists have been exploring increasingly ambitious ideas that attempt to explain why certain features of our universe aren't as surprising as they might first appear.Comment: Invited review for Nature, 11 page

    Conformal Quivers and Melting Molecules

    Get PDF
    Quiver quantum mechanics describes the low energy dynamics of a system of wrapped D-branes. It captures several aspects of single and multicentered BPS black hole geometries in four-dimensional N=2\mathcal{N} = 2 supergravity such as the presence of bound states and an exponential growth of microstates. The Coulomb branch of an Abelian three node quiver is obtained by integrating out the massive strings connecting the D-particles. It allows for a scaling regime corresponding to a deep AdS2_2 throat on the gravity side. In this scaling regime, the Coulomb branch is shown to be an SL(2,R)SL(2,\mathbb{R}) invariant multi-particle superconformal quantum mechanics. Finally, we integrate out the strings at finite temperature---rather than in their ground state---and show how the Coulomb branch `melts' into the Higgs branch at high enough temperatures. For scaling solutions the melting occurs for arbitrarily small temperatures, whereas bound states can be metastable and thus long lived. Throughout the paper, we discuss how far the analogy between the quiver model and the gravity picture, particularly within the AdS2_2 throat, can be taken.Comment: 49 pages, 16 figure

    Some geometric invariants from resolutions of Hilbert modules

    Full text link
    The model theory of Sz.-Nagy and Foias for contractions was reformulated in [15, chapter 3]. The existence of a unique minimal unitary dilation amounts to the exis-tence of a Silov resolution for contractive Hilbert modulesM over the disc algebra A(D) along with the fact that any two minimal Silov resolutions are isomorphic

    A direct physical interaction between Nanog and Sox2 regulates embryonic stem cell self-renewal

    Get PDF
    Embryonic stem (ES) cell self-renewal efficiency is determined by the Nanog protein level. However, the protein partners of Nanog that function to direct self-renewal are unclear. Here, we identify a Nanog interactome of over 130 proteins including transcription factors, chromatin modifying complexes, phosphorylation and ubiquitination enzymes, basal transcriptional machinery members, and RNA processing factors. Sox2 was identified as a robust interacting partner of Nanog. The purified Nanog–Sox2 complex identified a DNA recognition sequence present in multiple overlapping Nanog/Sox2 ChIP-Seq data sets. The Nanog tryptophan repeat region is necessary and sufficient for interaction with Sox2, with tryptophan residues required. In Sox2, tyrosine to alanine mutations within a triple-repeat motif (S X T/S Y) abrogates the Nanog–Sox2 interaction, alters expression of genes associated with the Nanog-Sox2 cognate sequence, and reduces the ability of Sox2 to rescue ES cell differentiation induced by endogenous Sox2 deletion. Substitution of the tyrosines with phenylalanine rescues both the Sox2–Nanog interaction and efficient self-renewal. These results suggest that aromatic stacking of Nanog tryptophans and Sox2 tyrosines mediates an interaction central to ES cell self-renewal

    Argumentation-based Normative Practical Reasoning

    Get PDF
    • …
    corecore