29 research outputs found

    Inhibition of Protein Aggregation: Supramolecular Assemblies of Arginine Hold the Key

    Get PDF
    BACKGROUND: Aggregation of unfolded proteins occurs mainly through the exposed hydrophobic surfaces. Any mechanism of inhibition of this aggregation should explain the prevention of these hydrophobic interactions. Though arginine is prevalently used as an aggregation suppressor, its mechanism of action is not clearly understood. We propose a mechanism based on the hydrophobic interactions of arginine. METHODOLOGY: We have analyzed arginine solution for its hydrotropic effect by pyrene solubility and the presence of hydrophobic environment by 1-anilino-8-naphthalene sulfonic acid fluorescence. Mass spectroscopic analyses show that arginine forms molecular clusters in the gas phase and the cluster composition is dependent on the solution conditions. Light scattering studies indicate that arginine exists as clusters in solution. In the presence of arginine, the reverse phase chromatographic elution profile of Alzheimer's amyloid beta 1-42 (Abeta(1-42)) peptide is modified. Changes in the hydrodynamic volume of Abeta(1-42) in the presence of arginine measured by size exclusion chromatography show that arginine binds to Abeta(1-42). Arginine increases the solubility of Abeta(1-42) peptide in aqueous medium. It decreases the aggregation of Abeta(1-42) as observed by atomic force microscopy. CONCLUSIONS: Based on our experimental results we propose that molecular clusters of arginine in aqueous solutions display a hydrophobic surface by the alignment of its three methylene groups. The hydrophobic surfaces present on the proteins interact with the hydrophobic surface presented by the arginine clusters. The masking of hydrophobic surface inhibits protein-protein aggregation. This mechanism is also responsible for the hydrotropic effect of arginine on various compounds. It is also explained why other amino acids fail to inhibit the protein aggregation

    Non-optic glioma in adults and children with neurofibromatosis 1

    No full text
    BACKGROUND: Non-optic gliomas occur in 5% of children with NF1, but little is known about these tumours in adults. We aimed to investigate progression, spontaneous regression and the natural history of non-optic gliomas in adults and compare these findings to the results found in children. RESULTS: One thousand seven hundred twenty-two brain MRI scans of 562 unselected individuals with NF1 were collected at the NF outpatient department of the University Hospital Hamburg-Eppendorf between 2003 and 2015. The number of scans per patient ranged from one to 12; patients were followed for a median of 3.7 years. We identified 24 patients (4.3%) with non-optic gliomas. Median age at first scan with glioma was 21.2 years, much higher than in previous publications. Only seven of the 24 non-optic glioma patients were symptomatic. Five of 24 patients had multiple non-optic gliomas. Four individuals developed a new tumour, and 4 cases showed progression. The risk of new tumour development was 0.19% (95% confidence interval 0.06% to 0.52%) per patient year of follow-up for patients over 10 years. The rate of progressing non-optic gliomas per patient year of follow-up in the first 5 years after tumour diagnosis was 4.7% (95% confidence interval 1.5% to 12%). CONCLUSIONS: Non-optic gliomas are twice as common in an unselected cohort of NF1 patients as previously reported. This is likely due to increased frequency of diagnosis of asymptomatic tumours when routine MRIs are performed and a higher prevalence in older individuals
    corecore