29 research outputs found

    Ecotoxicity of carbamazepine and its UV photolysis transformation products

    No full text
    Carbamazepine, an anti-epileptic pharmaceutical agent commonly found in wastewater, is highly recalcitrant to standard wastewater treatment practices. This study investigated the mixture toxicity of carbamazepine transformation products formed during ultraviolet (UV) photolysis using three standard ecotoxicity assays (representing bacteria, algae and crustaceans). UV-treatment of 6 mg L− 1 carbamazepine solution was carried out over a 120 min period and samples were removed periodically over the course of the experiment. Quantification results confirmed the degradation of carbamazepine throughout the treatment period, together with concurrent increases in acridine and acridone concentrations. Ecotoxicity was shown to increase in parallel with carbamazepine degradation indicating that the mixture of degradation products formed was more toxic than the parent compound, and all three ecotoxicity endpoints were still inhibited > 60% relative to control populations upon dosing with 90 + min UV-treated carbamazepine solution. Single compound toxicity testing also confirmed the higher toxicity of measured degradation products relative to the parent compound. These results show that transformation products considerably more toxic than carbamazepine itself may be produced during UV-treatment of wastewater effluents and/or photo-induced degradation of carbamazepine in natural waters. This study highlights the need to consider mixture toxicity and the formation and persistence of toxicologically relevant transformation products when assessing the environmental risks posed by pharmaceutical compounds.

    Presence and fate of priority substances in domestic greywater treatment and reuse systems

    Get PDF
    A wide range of household sources may potentially contribute to contaminant loads in domestic greywater. The ability of greywater treatment systems to act as emission control barriers for household micropollutants, thereby providing environmental benefits in addition to potable water savings, have not been fully explored. This paper investigates the sources, presence and potential fate of a selection of xenobiotic micropollutants in on-site greywater treatment systems. All of the investigated compounds are listed under the European Water Framework Directive as either "Priority Substances" (PS) or "Priority Hazardous Substances" (PHS). Significant knowledge gaps are identified. A wide range of potential treatment trains are available for greywater treatment and reuse but treatment efficiency data for priority substances and other micropollutants is very limited. Geochemical modelling indicates that PS/PHS removal during treatment is likely to be predominantly due to sludge/solid phase adsorption, with only minor contributions to the water phase. Many PS/PHS are resistant to biodegradation and as the majority of automated greywater treatment plants periodically discharge sludge to the municipal sewerage system, greywater treatment is unlikely to act as a comprehensive PS/PHS emission barrier. Hence, it is important to ensure that other source control options (e.g. eco-labeling, substance substitution, and regulatory controls) for household items continue to be pursued, in order that PS/PHS emissions from these sources are effectively reduced and/or phased out as required under the demands of the European Water Framework Directive
    corecore