32 research outputs found
Voltage-Gated Ion Channel Dysfunction Precedes Cardiomyopathy Development in the Dystrophic Heart
Duchenne muscular dystrophy (DMD), caused by mutations in the dystrophin gene, is associated with severe cardiac complications including cardiomyopathy and cardiac arrhythmias. Recent research suggests that impaired voltage-gated ion channels in dystrophic cardiomyocytes accompany cardiac pathology. It is, however, unknown if the ion channel defects are primary effects of dystrophic gene mutations, or secondary effects of the developing cardiac pathology.To address this question, we first investigated sodium channel impairments in cardiomyocytes derived from dystrophic neonatal mice prior to cardiomyopahty development, by using the whole cell patch clamp technique. Besides the most common model for DMD, the dystrophin-deficient mdx mouse, we also used mice additionally carrying an utrophin mutation. In neonatal cardiomyocytes, dystrophin-deficiency generated a 25% reduction in sodium current density. In addition, extra utrophin-deficiency significantly altered sodium channel gating parameters. Moreover, also calcium channel inactivation was considerably reduced in dystrophic neonatal cardiomyocytes, suggesting that ion channel abnormalities are universal primary effects of dystrophic gene mutations. To assess developmental changes, we also studied sodium channel impairments in cardiomyocytes derived from dystrophic adult mice, and compared them with the respective abnormalities in dystrophic neonatal cells. Here, we found a much stronger sodium current reduction in adult cardiomyocytes. The described sodium channel impairments slowed the upstroke of the action potential in adult cardiomyocytes, and only in dystrophic adult mice, the QRS interval of the electrocardiogram was prolonged.Ion channel impairments precede pathology development in the dystrophic heart, and may thus be considered potential cardiomyopathy triggers
Carbon Nanotubes in Tissue Engineering
For their peculiar features carbon nanotubes (CNTs) are emerging in many areas of nanotechnology applications. CNT-based technology has been increasingly proposed for biomedical applications, to develop biomolecule nanocarriers, bionanosensors and smart material for tissue engineering purposes. In the following chapter this latter application will be explored, describing why CNTs can be considered an ideal material able to support and boost the growth and the proliferation of many kind of tissues