31 research outputs found

    Low potency toxins reveal dense interaction networks in metabolism

    Get PDF
    Background The chemicals of metabolism are constructed of a small set of atoms and bonds. This may be because chemical structures outside the chemical space in which life operates are incompatible with biochemistry, or because mechanisms to make or utilize such excluded structures has not evolved. In this paper I address the extent to which biochemistry is restricted to a small fraction of the chemical space of possible chemicals, a restricted subset that I call Biochemical Space. I explore evidence that this restriction is at least in part due to selection again specific structures, and suggest a mechanism by which this occurs. Results Chemicals that contain structures that our outside Biochemical Space (UnBiological groups) are more likely to be toxic to a wide range of organisms, even though they have no specifically toxic groups and no obvious mechanism of toxicity. This correlation of UnBiological with toxicity is stronger for low potency (millimolar) toxins. I relate this to the observation that most chemicals interact with many biological structures at low millimolar toxicity. I hypothesise that life has to select its components not only to have a specific set of functions but also to avoid interactions with all the other components of life that might degrade their function. Conclusions The chemistry of life has to form a dense, self-consistent network of chemical structures, and cannot easily be arbitrarily extended. The toxicity of arbitrary chemicals is a reflection of the disruption to that network occasioned by trying to insert a chemical into it without also selecting all the other components to tolerate that chemical. This suggests new ways to test for the toxicity of chemicals, and that engineering organisms to make high concentrations of materials such as chemical precursors or fuels may require more substantial engineering than just of the synthetic pathways involved

    Use of the iNo score to discriminate normal from altered nucleolar morphology, with applications in basic cell biology and potential in human disease diagnostics

    No full text
    Ribosome biogenesis is initiated in the nucleolus, a cell condensate essential to gene expression, whose morphology informs cancer pathologists on the health status of a cell. Here, we describe a protocol for assessing, both qualitatively and quantitatively, the involvement of trans-acting factors in the nucleolar structure. The protocol involves use of siRNAs to deplete cells of factors of interest, fluorescence imaging of nucleoli in an automated high-throughput platform, and use of dedicated software to determine an index of nucleolar disruption, the iNo score. This scoring system is unique in that it integrates the five most discriminant shape and textural features of the nucleolus into a parametric equation. Determining the iNo score enables both qualitative and quantitative factor classification with prediction of function (functional clustering), which to our knowledge is not achieved by competing approaches, as well as stratification of their effect (severity of defects) on nucleolar structure. The iNo score has the potential to be useful in basic cell biology (nucleolar structure–function relationships, mitosis, and senescence), developmental and/or organismal biology (aging), and clinical practice (cancer, viral infection, and reproduction). The entire protocol can be completed within 1 week
    corecore