2,595 research outputs found
A standing-wave thermoacoustic engine driven by liquid nitrogen
Thermoacoustic oscillation at cryogenic temperatures, such as Taconis oscillation, has been typically suppressed in the former studies, and few efforts have been made to enhance it. We proposed a standing-wave thermoacoustic engine (TE) driven by liquid cryogens instead of the conventional heat to enhance the thermoacoustic effects and utilize the cold energy. Experimental and theoretical work has been performed on a self-made standingwave TE to demonstrate the feasibility and the operating characteristics of the engine driven by the liquid nitrogen. Experiments show that with nitrogen at 0.5 MPa as a working gas, a pressure ratio of 1.21 is obtained on the TE driven by liquid nitrogen with a much lower temperature difference along the stack compared to that of the conventional TE. The onset temperature difference decreases by 28.9% with helium at 0.63 MPa as a working gas, compared to that of the conventional TE. This study verifies the feasibility of enhancing the thermoacoustic oscillation at cryogenic temperatures. The TEs driven by liquid cryogens such as liquid nitrogen and liquefied nature gas (LNG), may be an alternative for recovering the cold energy
A Upf3b-mutant mouse model with behavioral and neurogenesis defects.
Nonsense-mediated RNA decay (NMD) is a highly conserved and selective RNA degradation pathway that acts on RNAs terminating their reading frames in specific contexts. NMD is regulated in a tissue-specific and developmentally controlled manner, raising the possibility that it influences developmental events. Indeed, loss or depletion of NMD factors have been shown to disrupt developmental events in organisms spanning the phylogenetic scale. In humans, mutations in the NMD factor gene, UPF3B, cause intellectual disability (ID) and are strongly associated with autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD) and schizophrenia (SCZ). Here, we report the generation and characterization of mice harboring a null Upf3b allele. These Upf3b-null mice exhibit deficits in fear-conditioned learning, but not spatial learning. Upf3b-null mice also have a profound defect in prepulse inhibition (PPI), a measure of sensorimotor gating commonly deficient in individuals with SCZ and other brain disorders. Consistent with both their PPI and learning defects, cortical pyramidal neurons from Upf3b-null mice display deficient dendritic spine maturation in vivo. In addition, neural stem cells from Upf3b-null mice have impaired ability to undergo differentiation and require prolonged culture to give rise to functional neurons with electrical activity. RNA sequencing (RNAseq) analysis of the frontal cortex identified UPF3B-regulated RNAs, including direct NMD target transcripts encoding proteins with known functions in neural differentiation, maturation and disease. We suggest Upf3b-null mice serve as a novel model system to decipher cellular and molecular defects underlying ID and neurodevelopmental disorders
Antisense DNA parameters derived from next-nearest-neighbor analysis of experimental data
<p>Abstract</p> <p>Background</p> <p>The enumeration of tetrameric and other sequence motifs that are positively or negatively correlated with <it>in vivo </it>antisense DNA effects has been a useful addition to the arsenal of information needed to predict effective targets for antisense DNA control of gene expression. Such retrospective information derived from <it>in vivo </it>cellular experiments characterizes aspects of the sequence dependence of antisense inhibition that are not predicted by nearest-neighbor (NN) thermodynamic parameters derived from <it>in vitro </it>experiments. However, quantitation of the antisense contributions of motifs is problematic, since individual motifs are not isolated from the effects of neighboring nucleotides, and motifs may be overlapping. These problems are circumvented by a next-nearest-neighbor (NNN) analysis of antisense DNA effects in which the overlapping nature of nearest-neighbors is taken into account.</p> <p>Results</p> <p>Next-nearest-neighbor triplet combinations of nucleotides are the simplest that include overlapping sequence effects and therefore can encompass interactions beyond those of nearest neighbors. We used singular value decomposition (SVD) to fit experimental data from our laboratory in which phosphorothioate-modified antisense DNAs (S-DNAs) 20 nucleotides long were used to inhibit cellular protein expression in 112 experiments involving four gene targets and two cell lines. Data were fitted using a NNN model, neglecting end effects, to derive NNN inhibition parameters that could be combined to give parameters for a set of 49 sequences that represents the inhibitory effects of all possible overlapping triplet interactions in the cellular targets of these antisense S-DNAs. We also show that parameters to describe subsets of the data, such as the mRNAs being targeted and the cell lines used, can be included in such a derivation. While NNN triplet parameters provided an adequate model to fit our data, NN doublet parameters did not.</p> <p>Conclusions</p> <p>The methodology presented illustrates how NNN antisense inhibitory information can be derived from <it>in vivo </it>cellular experiments. Subsequent calculations of the antisense inhibitory parameters for any mRNA target sequence automatically take into account the effects of all possible overlapping combinations of nearest-neighbors in the sequence. This procedure is more robust than the tallying of tetrameric motifs that have positive or negative antisense effects. The specific parameters derived in this work are limited in their applicability by the relatively small database of experiments that was used in their derivation.</p
Associations of vitamin D pathway genes with circulating 25-hydroxyvitamin-D, 1,25-dihydroxyvitamin-D, and prostate cancer:a nested case-control study
Vitamin D pathway single nucleotide polymorphisms (SNPs) are potentially useful proxies for investigating whether circulating vitamin D metabolites [total 25-hydroxyvitamin-D, 25(OH)D; 1,25-dihydroxyvitamin, 1,25(OH)2D] are causally related to prostate cancer. We investigated associations of sixteen SNPs across seven genes with prostate-specific antigen-detected prostate cancer
The Psychological Impact of COVID-19 and Restrictive Measures in the World
Background: In a short time, the COVID-19 pandemic turned into a global emergency. The fear of becoming infected and the lockdown measures have drastically changed people's daily routine. The aim of this study is to establish the psychological impact that the COVID-19 pandemic is entailing, particularly with regards to levels of stress, anxiety and depression, and to the risks of developing Post-Traumatic Stress Disorder (PTSD). Methods: The study, carried out with a sample of 1612 subjects distributed in seven countries (Australia, China, Ecuador, Iran, Italy, Norway and the United States), allowed us to collect information about the psychological impact of COVID-19. Results: The findings of this study show that the levels of stress, depression and anxiety, as well as the risks of PTSD, are higher than average in over half of the considered sample. The severity of these disorders significantly depends on gender, type of outdoor activities, characteristics of their homes, eventual presence of infected acquaintances, time dedicated to looking for related information (in the news and social networks), type of source information and, in part, to the level of education and income. Conclusions: We conclude that COVID-19 has a very strong psychological impact on the global population. This appears to be linked to the coping strategies adopted, level of mindful awareness, socio-demographic variables, people's habits and the way individuals use means of communication and information
A statistical framework for genetic association studies of power curves in bird flight
How the power required for bird flight varies as a function of forward speed can be used to predict the flight style and behavioral strategy of a bird for feeding and migration. A U-shaped curve was observed between the power and flight velocity in many birds, which is consistent to the theoretical prediction by aerodynamic models. In this article, we present a general genetic model for fine mapping of quantitative trait loci (QTL) responsible for power curves in a sample of birds drawn from a natural population. This model is developed within the maximum likelihood context, implemented with the EM algorithm for estimating the population genetic parameters of QTL and the simplex algorithm for estimating the QTL genotype-specific parameters of power curves. Using Monte Carlo simulation derived from empirical observations of power curves in the European starling (Sturnus vulgaris), we demonstrate how the underlying QTL for power curves can be detected from molecular markers and how the QTL detected affect the most appropriate flight speeds used to design an optimal migration strategy. The results from our model can be directly integrated into a conceptual framework for understanding flight origin and evolution
Air pollution perception in ten countries during the COVID-19 pandemic
As largely documented in the literature, the stark restrictions enforced worldwide in 2020 to curb the COVID-19 pandemic also curtailed the production of air pollutants to some extent. This study investigates the perception of the air pollution as assessed by individuals located in ten countries: Australia, Brazil, China, Ghana, India, Iran, Italy, Norway, South Africa and the USA. The perceptions towards air quality were evaluated by employing an online survey administered in May 2020. Participants (Nâ=â9394) in the ten countries expressed their opinions according to a Likert-scale response. A reduction in pollutant concentration was clearly perceived, albeit to a different extent, by all populations. The survey participants located in India and Italy perceived the largest drop in the air pollution concentration; conversely, the smallest variation was perceived among Chinese and Norwegian respondents. Among all the demographic indicators considered, only gender proved to be statistically significant
Dichotomy of Tyrosine Hydroxylase and Dopamine Regulation between Somatodendritic and Terminal Field Areas of Nigrostriatal and Mesoaccumbens Pathways
Measures of dopamine-regulating proteins in somatodendritic regions are often used only as static indicators of neuron viability, overlooking the possible impact of somatodendritic dopamine (DA) signaling on behavior and the potential autonomy of DA regulation between somatodendritic and terminal field compartments. DA reuptake capacity is less in somatodendritic regions, possibly placing a greater burden on de novo DA biosynthesis within this compartment to maintain DA signaling. Therefore, regulation of tyrosine hydroxylase (TH) activity may be particularly critical for somatodendritic DA signaling. Phosphorylation of TH at ser31 or ser40 can increase activity, but their impact on L-DOPA biosynthesis in vivo is unknown. Thus, determining their relationship with L-DOPA tissue content could reveal a mechanism by which DA signaling is normally maintained. In Brown-Norway Fischer 344 F1 hybrid rats, we quantified TH phosphorylation versus L-DOPA accumulation. After inhibition of aromatic acid decarboxylase, L-DOPA tissue content per recovered TH protein was greatest in NAc, matched by differences in ser31, but not ser40, phosphorylation. The L-DOPA per catecholamine and DA turnover ratios were significantly greater in SN and VTA, suggesting greater reliance on de novo DA biosynthesis therein. These compartmental differences reflected an overall autonomy of DA regulation, as seen by decreased DA content in SN and VTA, but not in striatum or NAc, following short-term DA biosynthesis inhibition from local infusion of the TH inhibitor α-methyl-p-tyrosine, as well as in the long-term process of aging. Such data suggest ser31 phosphorylation plays a significant role in regulating TH activity in vivo, particularly in somatodendritic regions, which may have a greater reliance on de novo DA biosynthesis. Thus, to the extent that somatodendritic DA release affects behavior, TH regulation in the midbrain may be critical for DA bioavailability to influence behavior
Expression of mutant exon 1 huntingtin fragments in human neural stem cells and neurons causes inclusion formation and mitochondrial dysfunction.
Robust cellular models are key in determining pathological mechanisms that lead to neurotoxicity in Huntington's disease (HD) and for high throughput preâclinical screening of potential therapeutic compounds. Such models exist but mostly comprise nonâhuman or nonâneuronal cells that may not recapitulate the correct biochemical milieu involved in pathology. We have developed a new human neuronal cell model of HD, using neural stem cells (ReNcell VM NSCs) stably transduced to express exon 1 huntingtin (HTT) fragments with variable length polyglutamine (polyQ) tracts. Using a system with matched expression levels of exon 1 HTT fragments, we investigated the effect of increasing polyQ repeat length on HTT inclusion formation, location, neuronal survival, and mitochondrial function with a view to creating an in vitro screening platform for therapeutic screening. We found that expression of exon 1 HTT fragments with longer polyQ tracts led to the formation of intraânuclear inclusions in a polyQ lengthâdependent manner during neurogenesis. There was no overt effect on neuronal viability, but defects of mitochondrial function were found in the pathogenic lines. Thus, we have a human neuronal cell model of HD that may recapitulate some of the earliest stages of HD pathogenesis, namely inclusion formation and mitochondrial dysfunction
A search for the decay modes B+/- to h+/- tau l
We present a search for the lepton flavor violating decay modes B+/- to h+/-
tau l (h= K,pi; l= e,mu) using the BaBar data sample, which corresponds to 472
million BBbar pairs. The search uses events where one B meson is fully
reconstructed in one of several hadronic final states. Using the momenta of the
reconstructed B, h, and l candidates, we are able to fully determine the tau
four-momentum. The resulting tau candidate mass is our main discriminant
against combinatorial background. We see no evidence for B+/- to h+/- tau l
decays and set a 90% confidence level upper limit on each branching fraction at
the level of a few times 10^-5.Comment: 15 pages, 7 figures, submitted to Phys. Rev.
- âŠ