195 research outputs found
Supersymmetric AdS_4 black holes and attractors
Using the general recipe given in arXiv:0804.0009, where all timelike
supersymmetric solutions of N=2, D=4 gauged supergravity coupled to abelian
vector multiplets were classified, we construct the first examples of genuine
supersymmetric black holes in AdS_4 with nonconstant scalar fields. This is
done for various choices of the prepotential, amongst others for the STU model.
These solutions permit to study the BPS attractor flow in AdS. We also
determine the most general supersymmetric static near-horizon geometry and
obtain the attractor equations in gauged supergravity. As a general feature we
find the presence of flat directions in the black hole potential, i.e.,
generically the values of the moduli on the horizon are not completely
specified by the charges. For one of the considered prepotentials, the
resulting moduli space is determined explicitely. Still, in all cases, we find
that the black hole entropy depends only on the charges, in agreement with the
attractor mechanism.Comment: 25 pages, uses JHEP3.cl
Layered social influence promotes multiculturality in the Axelrod model
9 pages, 4 figures, was "Robust multiculturality emerges from layered social influence". In press in Scientific Report
Culture-area relation in Axelrod's model for culture dissemination
Axelrod's model for culture dissemination offers a nontrivial answer to the
question of why there is cultural diversity given that people's beliefs have a
tendency to become more similar to each other's as people interact repeatedly.
The answer depends on the two control parameters of the model, namely, the
number of cultural features that characterize each agent, and the number
of traits that each feature can take on, as well as on the size of the
territory or, equivalently, on the number of interacting agents. Here we
investigate the dependence of the number of distinct coexisting cultures on
the area in Axelrod's model -- the culture-area relationship -- through
extensive Monte Carlo simulations. We find a non-monotonous culture-area
relation, for which the number of cultures decreases when the area grows beyond
a certain size, provided that is smaller than a threshold value and . In the limit of infinite area, this threshold value
signals the onset of a discontinuous transition between a globalized regime
marked by a uniform culture (C=1), and a completely polarized regime where all
possible cultures coexist. Otherwise the culture-area relation
exhibits the typical behavior of the species-area relation, i.e., a
monotonically increasing curve the slope of which is steep at first and
steadily levels off at some maximum diversity value
Dynamical Patterns of Cattle Trade Movements
Despite their importance for the spread of zoonotic diseases, our
understanding of the dynamical aspects characterizing the movements of farmed
animal populations remains limited as these systems are traditionally studied
as static objects and through simplified approximations. By leveraging on the
network science approach, here we are able for the first time to fully analyze
the longitudinal dataset of Italian cattle movements that reports the mobility
of individual animals among farms on a daily basis. The complexity and
inter-relations between topology, function and dynamical nature of the system
are characterized at different spatial and time resolutions, in order to
uncover patterns and vulnerabilities fundamental for the definition of targeted
prevention and control measures for zoonotic diseases. Results show how the
stationarity of statistical distributions coexists with a strong and
non-trivial evolutionary dynamics at the node and link levels, on all
timescales. Traditional static views of the displacement network hide important
patterns of structural changes affecting nodes' centrality and farms' spreading
potential, thus limiting the efficiency of interventions based on partial
longitudinal information. By fully taking into account the longitudinal
dimension, we propose a novel definition of dynamical motifs that is able to
uncover the presence of a temporal arrow describing the evolution of the system
and the causality patterns of its displacements, shedding light on mechanisms
that may play a crucial role in the definition of preventive actions
Dynamical Patterns of Cattle Trade Movements
Despite their importance for the spread of zoonotic diseases, our
understanding of the dynamical aspects characterizing the movements of farmed
animal populations remains limited as these systems are traditionally studied
as static objects and through simplified approximations. By leveraging on the
network science approach, here we are able for the first time to fully analyze
the longitudinal dataset of Italian cattle movements that reports the mobility
of individual animals among farms on a daily basis. The complexity and
inter-relations between topology, function and dynamical nature of the system
are characterized at different spatial and time resolutions, in order to
uncover patterns and vulnerabilities fundamental for the definition of targeted
prevention and control measures for zoonotic diseases. Results show how the
stationarity of statistical distributions coexists with a strong and
non-trivial evolutionary dynamics at the node and link levels, on all
timescales. Traditional static views of the displacement network hide important
patterns of structural changes affecting nodes' centrality and farms' spreading
potential, thus limiting the efficiency of interventions based on partial
longitudinal information. By fully taking into account the longitudinal
dimension, we propose a novel definition of dynamical motifs that is able to
uncover the presence of a temporal arrow describing the evolution of the system
and the causality patterns of its displacements, shedding light on mechanisms
that may play a crucial role in the definition of preventive actions
AΞ² Mediated Diminution of MTT ReductionβAn Artefact of Single Cell Culture?
The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide (MTT) reduction assay is a frequently used and easily reproducible method to measure beta-amyloid (AΞ²) toxicity in different types of single cell culture. To our knowledge, the influence of AΞ² on MTT reduction has never been tested in more complex tissue. Initially, we reproduced the disturbed MTT reduction in neuron and astroglia primary cell cultures from rats as well as in the BV2 microglia cell line, utilizing four different AΞ² species, namely freshly dissolved AΞ² (25-35), fibrillar AΞ² (1-40), oligomeric AΞ² (1-42) and oligomeric AΞ² (1-40). In contrast to the findings in single cell cultures, none of these AΞ² species altered MTT reduction in rat organotypic hippocampal slice cultures (OHC). Moreover, application of AΞ² to acutely isolated hippocampal slices from adult rats and in vivo intracerebroventricular injection of AΞ² also did not influence the MTT reduction in the respective tissue. Failure of AΞ² penetration into the tissue cannot explain the differences between single cells and the more complex brain tissue. Thus electrophysiological investigations disclosed an impairment of long-term potentiation (LTP) in the CA1 region of hippocampal slices from rat by application of oligomeric AΞ² (1-40), but not by freshly dissolved AΞ² (25-35) or fibrillar AΞ² (1-40). In conclusion, the experiments revealed a glaring discrepancy between single cell cultures and complex brain tissue regarding the effect of different AΞ² species on MTT reduction. Particularly, the differential effect of oligomeric versus other AΞ² forms on LTP was not reflected in the MTT reduction assay. This may indicate that the AΞ² oligomer effect on synaptic function reflected by LTP impairment precedes changes in formazane formation rate or that cells embedded in a more natural environment in the tissue are less susceptible to damage by AΞ², raising cautions against the consideration of single cell MTT reduction activity as a reliable assay in Alzheimer's drug discovery studies
CapZ-lipid membrane interactions: a computer analysis
BACKGROUND: CapZ is a calcium-insensitive and lipid-dependent actin filament capping protein, the main function of which is to regulate the assembly of the actin cytoskeleton. CapZ is associated with membranes in cells and it is generally assumed that this interaction is mediated by polyphosphoinositides (PPI) particularly PIP(2), which has been characterized in vitro. RESULTS: We propose that non-PPI lipids also bind CapZ. Data from computer-aided sequence and structure analyses further suggest that CapZ could become partially buried in the lipid bilayer probably under mildly acidic conditions, in a manner that is not only dependent on the presence of PPIs. We show that lipid binding could involve a number of sites that are spread throughout the CapZ molecule i.e., alpha- and beta-subunits. However, a beta-subunit segment between residues 134β151 is most likely to be involved in interacting with and inserting into lipid membrane due to a slighly higher ratio of positively to negatively charged residues and also due to the presence of a small hydrophobic helix. CONCLUSION: CapZ may therefore play an essential role in providing a stable membrane anchor for actin filaments
Salmonella enterica biofilm-mediated dispersal by nitric oxide donors in association with cellulose nanocrystal hydrogels
Protected by extracellular polymers, microbes within biofilms are significantly more resistant to disinfectants. Current research has been instrumental in identifying nitric oxide donors and hydrogels as potential disinfectant additives. Nitric oxide (NO) donors are considered a very promising molecule as biofilm dispersal agents and hydrogels have recently attracted a lot of interest due to their biocompatible properties and ability to form stable thin films. When the NO donor MAHMA NONOate was dissolved in phosphate saline buffer, it was able to reduce the biomass of well-established biofilms up to 15% for at least 24Β h of contact time. Encapsulation of MAHMA NONOate and molsidomine within a hydrogel composed of cellulose nanocrystals (CNC) has shown a synergistic effect in dispersing well-established biofilms: after 2Β h of exposure, moderate but significant dispersion was measured. After 6Β h of exposure, the number of cells transitioning from the biofilm to the planktonic state was up to 0.6 log higher when compared with non-treated biofilms. To further explore the transport processes of NO donors within hydrogels, we measured the nitric oxide flux from gels, at 25Β°C for a composite of 0.1Β Β΅M MAHMA NONOateβCNC. Nitric oxide diffuses up to 500Β Β΅m from the hydrogel surface, with flux decreasing according to Fickβs law. 60% of NO was released from the hydrogel composite during the first 23Β min. These data suggest that the combined treatments with nitric oxide donor and hydrogels may allow for new sustainable cleaning strategies
Electromagnetic Field Effect or Simply Stress? Effects of UMTS Exposure on Hippocampal Longterm Plasticity in the Context of Procedure Related Hormone Release
Harmful effects of electromagnetic fields (EMF) on cognitive and behavioural features of humans and rodents have been controversially discussed and raised persistent concern about adverse effects of EMF on general brain functions. In the present study we applied radio-frequency (RF) signals of the Universal Mobile Telecommunications System (UMTS) to full brain exposed male Wistar rats in order to elaborate putative influences on stress hormone release (corticosteron; CORT and adrenocorticotropic hormone; ACTH) and on hippocampal derived synaptic long-term plasticity (LTP) and depression (LTD) as electrophysiological hallmarks for memory storage and memory consolidation. Exposure was computer controlled providing blind conditions. Nominal brain-averaged specific absorption rates (SAR) as a measure of applied mass-related dissipated RF power were 0, 2, and 10 W/kg over a period of 120 min. Comparison of cage exposed animals revealed, regardless of EMF exposure, significantly increased CORT and ACTH levels which corresponded with generally decreased field potential slopes and amplitudes in hippocampal LTP and LTD. Animals following SAR exposure of 2 W/kg (averaged over the whole brain of 2.3 g tissue mass) did not differ from the sham-exposed group in LTP and LTD experiments. In contrast, a significant reduction in LTP and LTD was observed at the high power rate of SAR (10 W/kg). The results demonstrate that a rate of 2 W/kg displays no adverse impact on LTP and LTD, while 10 W/kg leads to significant effects on the electrophysiological parameters, which can be clearly distinguished from the stress derived background. Our findings suggest that UMTS exposure with SAR in the range of 2 W/kg is not harmful to critical markers for memory storage and memory consolidation, however, an influence of UMTS at high energy absorption rates (10 W/kg) cannot be excluded
Use of Zebrafish to Probe the Divergent Virulence Potentials and Toxin Requirements of Extraintestinal Pathogenic Escherichia coli
Extraintestinal pathogenic E. coli (ExPEC) cause an array of diseases, including sepsis, neonatal meningitis, and urinary tract infections. Many putative virulence factors that might modulate ExPEC pathogenesis have been identified through sequencing efforts, epidemiology, and gene expression profiling, but few of these genes have been assigned clearly defined functional roles during infection. Using zebrafish embryos as surrogate hosts, we have developed a model system with the ability to resolve diverse virulence phenotypes and niche-specific restrictions among closely related ExPEC isolates during either localized or systemic infections. In side-by-side comparisons of prototypic ExPEC isolates, we observed an unexpectedly high degree of phenotypic diversity that is not readily apparent using more traditional animal hosts. In particular, the capacity of different ExPEC isolates to persist and multiply within the zebrafish host and cause disease was shown to be variably dependent upon two secreted toxins, Ξ±-hemolysin and cytotoxic necrotizing factor. Both of these toxins appear to function primarily in the neutralization of phagocytes, which are recruited in high numbers to sites of infection where they act as an essential host defense against ExPEC as well as less virulent E. coli strains. These results establish zebrafish as a valuable tool for the elucidation and functional analysis of both ExPEC virulence factors and host defense mechanisms
- β¦