9 research outputs found

    Sex-Specific Thresholds of High-Sensitivity Troponin in Patients With Suspected Acute Coronary Syndrome.

    Get PDF
    BACKGROUND: Major disparities between women and men in the diagnosis, management, and outcomes of acute coronary syndrome are well recognized. OBJECTIVES: The aim of this study was to evaluate the impact of implementing a high-sensitivity cardiac troponin I assay with sex-specific diagnostic thresholds for myocardial infarction in women and men with suspected acute coronary syndrome. METHODS: Consecutive patients with suspected acute coronary syndrome were enrolled in a stepped-wedge, cluster-randomized controlled trial across 10 hospitals. Myocardial injury was defined as high-sensitivity cardiac troponin I concentration >99th centile of 16 ng/l in women and 34 ng/l in men. The primary outcome was recurrent myocardial infarction or cardiovascular death at 1 year. RESULTS: A total of 48,282 patients (47% women) were included. Use of the high-sensitivity cardiac troponin I assay with sex-specific thresholds increased myocardial injury in women by 42% and in men by 6%. Following implementation, women with myocardial injury remained less likely than men to undergo coronary revascularization (15% vs. 34%) and to receive dual antiplatelet (26% vs. 43%), statin (16% vs. 26%), or other preventive therapies (p < 0.001 for all). The primary outcome occurred in 18% (369 of 2,072) and 17% (488 of 2,919) of women with myocardial injury before and after implementation, respectively (adjusted hazard ratio: 1.11; 95% confidence interval: 0.92 to 1.33), compared with 18% (370 of 2,044) and 15% (513 of 3,325) of men (adjusted hazard ratio: 0.85; 95% confidence interval: 0.71 to 1.01). CONCLUSIONS: Use of sex-specific thresholds identified 5 times more additional women than men with myocardial injury. Despite this increase, women received approximately one-half the number of treatments for coronary artery disease as men, and outcomes were not improved. (High-Sensitivity Troponin in the Evaluation of Patients With Acute Coronary Syndrome [High-STEACS]; NCT01852123)

    Cardiac Troponin Thresholds and Kinetics to Differentiate Myocardial Injury and Myocardial Infarction.

    Get PDF
    BACKGROUND: Although the 99th percentile is the recommended diagnostic threshold for myocardial infarction, some guidelines also advocate the use of higher troponin thresholds to rule in myocardial infarction at presentation. It is unclear whether the magnitude or change in troponin concentration can differentiate causes of myocardial injury and infarction in practice. METHODS: In a secondary analysis of a multicenter randomized controlled trial, we identified 46 092 consecutive patients presenting with suspected acute coronary syndrome without ST-segment-elevation myocardial infarction. High-sensitivity cardiac troponin I concentrations at presentation and on serial testing were compared between patients with myocardial injury and infarction. The positive predictive value and specificity were determined at the sex-specific 99th percentile upper reference limit and rule-in thresholds of 64 ng/L and 5-fold of the upper reference limit for a diagnosis of type 1 myocardial infarction. RESULTS: Troponin was above the 99th percentile in 8188 patients (18%). The diagnosis was type 1 or type 2 myocardial infarction in 50% and 14% and acute or chronic myocardial injury in 20% and 16%, respectively. Troponin concentrations were similar at presentation in type 1 (median [25th-75th percentile] 91 [30-493] ng/L) and type 2 (50 [22-147] ng/L) myocardial infarction and in acute (50 [26-134] ng/L) and chronic (51 [31-130] ng/L) myocardial injury. The 99th percentile and rule-in thresholds of 64 ng/L and 5-fold upper reference limit gave a positive predictive value of 57% (95% CI, 56%-58%), 59% (58%-61%), and 62% (60%-64%) and a specificity of 96% (96%-96%), 96% (96%-96%), and 98% (97%-98%), respectively. The absolute, relative, and rate of change in troponin concentration were highest in patients with type 1 myocardial infarction (P<0.001 for all). Discrimination improved when troponin concentration and change in troponin were combined compared with troponin concentration at presentation alone (area under the curve, 0.661 [0.642-0.680] versus 0.613 [0.594-0.633]). CONCLUSIONS: Although we observed important differences in the kinetics, cardiac troponin concentrations at presentation are insufficient to distinguish type 1 myocardial infarction from other causes of myocardial injury or infarction in practice and should not guide management decisions in isolation. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT01852123

    Role of active metabolites in the use of opioids

    No full text
    The opioid class of drugs, a large group, is mainly used for the treatment of acute and chronic persistent pain. All are eliminated from the body via metabolism involving principally CYP3A4 and the highly polymorphic CYP2D6, which markedly affects the drug's function, and by conjugation reactions mainly by UGT2B7. In many cases, the resultant metabolites have the same pharmacological activity as the parent opioid; however in many cases, plasma metabolite concentrations are too low to make a meaningful contribution to the overall clinical effects of the parent drug. These metabolites are invariably more water soluble and require renal clearance as an important overall elimination pathway. Such metabolites have the potential to accumulate in the elderly and in those with declining renal function with resultant accumulation to a much greater extent than the parent opioid. The best known example is the accumulation of morphine-6-glucuronide from morphine. Some opioids have active metabolites but at different target sites. These are norpethidine, a neurotoxic agent, and nordextropropoxyphene, a cardiotoxic agent. Clinicians need to be aware that many opioids have active metabolites that will become therapeutically important, for example in cases of altered pathology, drug interactions and genetic polymorphisms of drug-metabolizing enzymes. Thus, dose individualisation and the avoidance of adverse effects of opioids due to the accumulation of active metabolites or lack of formation of active metabolites are important considerations when opioids are used.Janet K. Coller, Lona L. Christrup, Andrew A. Somogy
    corecore