117 research outputs found

    Arrow's Theorem with a fixed feasible alternative

    Full text link
    Arrow's Theorem, in its social choice function formulation, assumes that all nonempty finite subsets of the universal set of alternatives is potentially a feasible set. We demonstrate that the axioms in Arrow's Theorem, with weak Pareto strengthened to strong Pareto, are consistent if it is assumed that there is a prespecified alternative which is in every feasible set. We further show that if the collection of feasible sets consists of all subsets of alternatives containing a prespecified list of alternatives and if there are at least three additional alternatives not on this list, replacing nondictatorship by anonymity results in an impossibility theorem.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47085/1/355_2004_Article_BF00450993.pd

    RT-qPCR reveals opsin gene upregulation associated with age and sex in guppies (Poecilia reticulata) - a species with color-based sexual selection and 11 visual-opsin genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>PCR-based surveys have shown that guppies (<it>Poecilia reticulata</it>) have an unusually large visual-opsin gene repertoire. This has led to speculation that opsin duplication and divergence has enhanced the evolution of elaborate male coloration because it improves spectral sensitivity and/or discrimination in females. However, this conjecture on evolutionary connections between opsin repertoire, vision, mate choice, and male coloration was generated with little data on gene expression. Here, we used RT-qPCR to survey visual-opsin gene expression in the eyes of males, females, and juveniles in order to further understand color-based sexual selection from the perspective of the visual system.</p> <p>Results</p> <p>Juvenile and adult (male and female) guppies express 10 visual opsins at varying levels in the eye. Two opsin genes in juveniles, <it>SWS2B </it>and <it>RH2-2</it>, accounted for >85% of all visual-opsin transcripts in the eye, excluding <it>RH1</it>. This relative abundance (RA) value dropped to about 65% in adults, as <it>LWS-A180 </it>expression increased from approximately 3% to 20% RA. The juvenile-to-female transition also showed <it>LWS-S180 </it>upregulation from about 1.5% to 7% RA. Finally, we found that expression in guppies' <it>SWS2-LWS </it>gene cluster is negatively correlated with distance from a candidate locus control region (LCR).</p> <p>Conclusions</p> <p>Selective pressures influencing visual-opsin gene expression appear to differ among age and sex. <it>LWS </it>upregulation in females is implicated in augmenting spectral discrimination of male coloration and courtship displays. In males, enhanced discrimination of carotenoid-rich food and possibly rival males are strong candidate selective pressures driving <it>LWS </it>upregulation. These developmental changes in expression suggest that adults possess better wavelength discrimination than juveniles. Opsin expression within the <it>SWS2-LWS </it>gene cluster appears to be regulated, in part, by a common LCR. Finally, by comparing our RT-qPCR data to MSP data, we were able to propose the first opsin-to-λ<sub>max </sub>assignments for all photoreceptor types in the cone mosaic.</p

    Long Lasting Local and Systemic Inflammation after Cerebral Hypoxic ischemia in Newborn Mice

    Get PDF
    Background: Hypoxic ischemia (HI) is an important cause of neonatal brain injury and subsequent inflammation affects neurological outcome. In this study we performed investigations of systemic and local activation states of inflammatory cells from innate and adaptive immunity at different time points after neonatal HI brain injury in mice. Methodology/Principal Findings: We developed a multiplex flow cytometry based method combined with immunohistochemistry to investigate cellular immune responses in the brain 24 h to 7 months after HI brain injury. In addition, functional studies of ex vivo splenocytes after cerebral hypoxic ischemia were performed. Both central and peripheral activation of CD11b + and CD11c + antigen presenting cells were seen with expression of the costimulatory molecule CD86 and MHC-II, indicating active antigen presentation in the damaged hemisphere and in the spleen. After one week, naïve CD45rb + T-lymphocytes were demonstrated in the damaged brain hemisphere. In a second phase after three months, pronounced activation of CD45rb 2 T-lymphocytes expressing CD69 and CD25 was seen in the damaged hemisphere. Brain homogenate induced proliferation in splenocytes after HI but not in controls. Conclusions/Significance: Our findings demonstrate activation of both local and systemic immune responses months after hypoxic ischemic neonatal brain injury. The long term immune activation observed is of general importance for future studies of the inflammatory response after brain injury as most previous studies have focused on the first few weeks afte

    Rationality, Irrationality and Escalating Behavior in Lowest Unique Bid Auctions

    Get PDF
    Information technology has revolutionized the traditional structure of markets. The removal of geographical and time constraints has fostered the growth of online auction markets, which now include millions of economic agents worldwide and annual transaction volumes in the billions of dollars. Here, we analyze bid histories of a little studied type of online auctions – lowest unique bid auctions. Similarly to what has been reported for foraging animals searching for scarce food, we find that agents adopt Lévy flight search strategies in their exploration of “bid space”. The Lévy regime, which is characterized by a power-law decaying probability distribution of step lengths, holds over nearly three orders of magnitude. We develop a quantitative model for lowest unique bid online auctions that reveals that agents use nearly optimal bidding strategies. However, agents participating in these auctions do not optimize their financial gain. Indeed, as long as there are many auction participants, a rational profit optimizing agent would choose not to participate in these auction markets

    Extensive population genetic structure in the giraffe

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A central question in the evolutionary diversification of large, widespread, mobile mammals is how substantial differentiation can arise, particularly in the absence of topographic or habitat barriers to dispersal. All extant giraffes (<it>Giraffa camelopardalis</it>) are currently considered to represent a single species classified into multiple subspecies. However, geographic variation in traits such as pelage pattern is clearly evident across the range in sub-Saharan Africa and abrupt transition zones between different pelage types are typically not associated with extrinsic barriers to gene flow, suggesting reproductive isolation.</p> <p>Results</p> <p>By analyzing mitochondrial DNA sequences and nuclear microsatellite loci, we show that there are at least six genealogically distinct lineages of giraffe in Africa, with little evidence of interbreeding between them. Some of these lineages appear to be maintained in the absence of contemporary barriers to gene flow, possibly by differences in reproductive timing or pelage-based assortative mating, suggesting that populations usually recognized as subspecies have a long history of reproductive isolation. Further, five of the six putative lineages also contain genetically discrete populations, yielding at least 11 genetically distinct populations.</p> <p>Conclusion</p> <p>Such extreme genetic subdivision within a large vertebrate with high dispersal capabilities is unprecedented and exceeds that of any other large African mammal. Our results have significant implications for giraffe conservation, and imply separate <it>in situ </it>and <it>ex situ </it>management, not only of pelage morphs, but also of local populations.</p

    Activation of JNK Signaling Mediates Amyloid-ß-Dependent Cell Death

    Get PDF
    Alzheimer's disease (AD) is an age related progressive neurodegenerative disorder. One of the reasons for Alzheimer's neuropathology is the generation of large aggregates of Aß42 that are toxic in nature and induce oxidative stress, aberrant signaling and many other cellular alterations that trigger neuronal cell death. However, the exact mechanisms leading to cell death are not clearly understood.We employed a Drosophila eye model of AD to study how Aß42 causes cell death. Misexpression of higher levels of Aß42 in the differentiating photoreceptors of fly retina rapidly induced aberrant cellular phenotypes and cell death. We found that blocking caspase-dependent cell death initially blocked cell death but did not lead to a significant rescue in the adult eye. However, blocking the levels of c-Jun NH(2)-terminal kinase (JNK) signaling pathway significantly rescued the neurodegeneration phenotype of Aß42 misexpression both in eye imaginal disc as well as the adult eye. Misexpression of Aß42 induced transcriptional upregulation of puckered (puc), a downstream target and functional read out of JNK signaling. Moreover, a three-fold increase in phospho-Jun (activated Jun) protein levels was seen in Aß42 retina as compared to the wild-type retina. When we blocked both caspases and JNK signaling simultaneously in the fly retina, the rescue of the neurodegenerative phenotype is comparable to that caused by blocking JNK signaling pathway alone.Our data suggests that (i) accumulation of Aß42 plaques induces JNK signaling in neurons and (ii) induction of JNK contributes to Aß42 mediated cell death. Therefore, inappropriate JNK activation may indeed be relevant to the AD neuropathology, thus making JNK a key target for AD therapies
    corecore