918 research outputs found

    Sensory Electrical Stimulation Improves Foot Placement during Targeted Stepping Post-Stroke

    Get PDF
    Proper foot placement is vital for maintaining balance during walking, requiring the integration of multiple sensory signals with motor commands. Disruption of brain structures post-stroke likely alters the processing of sensory information by motor centers, interfering with precision control of foot placement and walking function for stroke survivors. In this study, we examined whether somatosensory stimulation, which improves functional movements of the paretic hand, could be used to improve foot placement of the paretic limb. Foot placement was evaluated before, during, and after application of somatosensory electrical stimulation to the paretic foot during a targeted stepping task. Starting from standing, twelve chronic stroke participants initiated movement with the non-paretic limb and stepped to one of five target locations projected onto the floor with distances normalized to the paretic stride length. Targeting error and lower extremity kinematics were used to assess changes in foot placement and limb control due to somatosensory stimulation. Significant reductions in placement error in the medial–lateral direction (p = 0.008) were observed during the stimulation and post-stimulation blocks. Seven participants, presenting with a hip circumduction walking pattern, had reductions (p = 0.008) in the magnitude and duration of hip abduction during swing with somatosensory stimulation. Reductions in circumduction correlated with both functional and clinical measures, with larger improvements observed in participants with greater impairment. The results of this study suggest that somatosensory stimulation of the paretic foot applied during movement can improve the precision control of foot placement

    Deletion of the GABAA α2-subunit does not alter self dministration of cocaine or reinstatement of cocaine seeking

    Get PDF
    Rationale GABAA receptors containing α2-subunits are highly represented in brain areas that are involved in motivation and reward, and have been associated with addiction to several drugs, including cocaine. We have shown previously that a deletion of the α2-subunit results in an absence of sensitisation to cocaine. Objective We investigated the reinforcing properties of cocaine in GABAA α2-subunit knockout (KO) mice using an intravenous self-administration procedure. Methods α2-subunit wildtype (WT), heterozygous (HT) and KO mice were trained to lever press for a 30 % condensed milk solution. After implantation with a jugular catheter, mice were trained to lever press for cocaine (0.5 mg/kg/infusion) during ten daily sessions. Responding was extinguished and the mice tested for cue- and cocaine-primed reinstatement. Separate groups of mice were trained to respond for decreasing doses of cocaine (0.25, 0.125, 0.06 and 0.03 mg/kg). Results No differences were found in acquisition of lever pressing for milk. All genotypes acquired self-administration of cocaine and did not differ in rates of self-administration, dose dependency or reinstatement. However, whilst WT and HT mice showed a dose-dependent increase in lever pressing during the cue presentation, KO mice did not. Conclusions Despite a reported absence of sensitisation, motivation to obtain cocaine remains unchanged in KO and HT mice. Reinstatement of cocaine seeking by cocaine and cocaine-paired cues is also unaffected. We postulate that whilst not directly involved in reward perception, the α2-subunit may be involved in modulating the “energising” aspect of cocaine’s effects on reward-seeking

    Intermediate filaments of zebrafish retinal and optic nerve astrocytes and Müller glia: differential distribution of cytokeratin and GFAP

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Optic nerve regeneration (ONR) following injury is a model for central nervous system regeneration. In zebrafish, ONR is rapid - neurites cross the lesion and enter the optic tectum within 7 days; in mammals regeneration does not take place unless astrocytic reactivity is suppressed. Glial fibrillary acidic protein (GFAP) is used as a marker for retinal and optic nerve astrocytes in both fish and mammals, even though it has long been known that astrocytes of optic nerves in many fish, including zebrafish, express cytokeratins and not GFAP. We used immunofluorescence to localize GFAP and cytokeratin in wild-type zebrafish and transgenic zebrafish expressing green fluorescent protein (GFP) under control of a GFAP promoter to determine the pattern of expression of intermediate filaments in retina and optic nerve.</p> <p>Findings</p> <p>GFAP labeling and GFAP gene expression as indicated by GFP fluorescence was found only in the Müller glial cells of the retina. Within Müller cells, GFP fluorescence filled the entire cell while GFAP labelling was more restricted in distribution. No GFAP expression was observed in optic nerves. Cytokeratin labeling of astrocytes was observed throughout the optic nerve and less intensely in cells in the retinal inner plexiform layer. The retinal inner limiting membrane was strongly labeled by anti-cytokeratin.</p> <p>Conclusions</p> <p>Studies of astrocyte function during ONR in zebrafish cannot solely rely on GFAP as an astrocyte marker or indicator of reactivity. Future studies of ONR in zebrafish should include evaluation of changes in cytokeratin expression and localization in the optic nerve.</p

    Trends over 5 Decades in U.S. Occupation-Related Physical Activity and Their Associations with Obesity

    Get PDF
    BACKGROUND: The true causes of the obesity epidemic are not well understood and there are few longitudinal population-based data published examining this issue. The objective of this analysis was to examine trends in occupational physical activity during the past 5 decades and explore how these trends relate to concurrent changes in body weight in the U.S. METHODOLOGY/PRINCIPAL FINDINGS: Analysis of energy expenditure for occupations in U.S. private industry since 1960 using data from the U.S. Bureau of Labor Statistics. Mean body weight was derived from the U.S. National Health and Nutrition Examination Surveys (NHANES). In the early 1960's almost half the jobs in private industry in the U.S. required at least moderate intensity physical activity whereas now less than 20% demand this level of energy expenditure. Since 1960 the estimated mean daily energy expenditure due to work related physical activity has dropped by more than 100 calories in both women and men. Energy balance model predicted weights based on change in occupation-related daily energy expenditure since 1960 for each NHANES examination period closely matched the actual change in weight for 40-50 year old men and women. For example from 1960-62 to 2003-06 we estimated that the occupation-related daily energy expenditure decreased by 142 calories in men. Given a baseline weight of 76.9 kg in 1960-02, we estimated that a 142 calories reduction would result in an increase in mean weight to 89.7 kg, which closely matched the mean NHANES weight of 91.8 kg in 2003-06. The results were similar for women. CONCLUSION: Over the last 50 years in the U.S. we estimate that daily occupation-related energy expenditure has decreased by more than 100 calories, and this reduction in energy expenditure accounts for a significant portion of the increase in mean U.S. body weights for women and men

    Sintering mechanisms of metals under electric currents

    Get PDF
    International audienceThis chapter concerns the microscopic mechanisms involved in densifi-cation of metallic powders submitted to high electric current pulses like in the SPS technique. Because metallic systems exhibit high electric conductivity, focus is made on evaluating the sensitivity of the densification mechanisms on the current. Thus, a first part is devoted to the influence of electric currents on elementary met-allurgical phenomena (diffusion, plasticity…) which are involved in densification. Then, after recalling the micromechanical models of densification, the SPS kinetics is described, and analyzed in the framework of these models, with emphasis on the role of the current. Finally, theoretical and experimental investigations on electrically induced mechanisms at the scale of the powder particle contacts, are presented: dielectric breakdown of oxide layers, arcs and plasma, Joule overheating, electroplasticity and electromigration. Then, conclusions are drawn on the most probable mechanisms, and on the role of the current

    Deconvolution of Serum Cortisol Levels by Using Compressed Sensing

    Get PDF
    The pulsatile release of cortisol from the adrenal glands is controlled by a hierarchical system that involves corticotropin releasing hormone (CRH) from the hypothalamus, adrenocorticotropin hormone (ACTH) from the pituitary, and cortisol from the adrenal glands. Determining the number, timing, and amplitude of the cortisol secretory events and recovering the infusion and clearance rates from serial measurements of serum cortisol levels is a challenging problem. Despite many years of work on this problem, a complete satisfactory solution has been elusive. We formulate this question as a non-convex optimization problem, and solve it using a coordinate descent algorithm that has a principled combination of (i) compressed sensing for recovering the amplitude and timing of the secretory events, and (ii) generalized cross validation for choosing the regularization parameter. Using only the observed serum cortisol levels, we model cortisol secretion from the adrenal glands using a second-order linear differential equation with pulsatile inputs that represent cortisol pulses released in response to pulses of ACTH. Using our algorithm and the assumption that the number of pulses is between 15 to 22 pulses over 24 hours, we successfully deconvolve both simulated datasets and actual 24-hr serum cortisol datasets sampled every 10 minutes from 10 healthy women. Assuming a one-minute resolution for the secretory events, we obtain physiologically plausible timings and amplitudes of each cortisol secretory event with R[superscript 2] above 0.92. Identification of the amplitude and timing of pulsatile hormone release allows (i) quantifying of normal and abnormal secretion patterns towards the goal of understanding pathological neuroendocrine states, and (ii) potentially designing optimal approaches for treating hormonal disorders.National Science Foundation (U.S.). Graduate Research Fellowship ProgramNational Institutes of Health (U.S.) (NIH DP1 OD003646)National Science Foundation (U.S.) (0836720)National Science Foundation (U.S.). Office of Emerging Frontiers in Research and Innovation (EFRI-0735956

    Lambda and Antilambda polarization from deep inelastic muon scattering

    Full text link
    We report results of the first measurements of Lambda and Antilambda polarization produced in deep inelastic polarized muon scattering on the nucleon. The results are consistent with an expected trend towards positive polarization with increasing x_F. The polarizations of Lambda and Antilambda appear to have opposite signs. A large negative polarization for Lambda at low positive x_F is observed and is not explained by existing models.A possible interpretation is presented.Comment: 9 pages, 2 figure

    Design, rationale, and baseline characteristics of a cluster randomized controlled trial of pay for performance for hypertension treatment: study protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite compelling evidence of the benefits of treatment and well-accepted guidelines for treatment, hypertension is controlled in less than one-half of United States citizens.</p> <p>Methods/design</p> <p>This randomized controlled trial tests whether explicit financial incentives promote the translation of guideline-recommended care for hypertension into clinical practice and improve blood pressure (BP) control in the primary care setting. Using constrained randomization, we assigned 12 Veterans Affairs hospital outpatient clinics to four study arms: physician-level incentive; group-level incentive; combination of physician and group incentives; and no incentives (control). All participants at the hospital (cluster) were assigned to the same study arm. We enrolled 83 full-time primary care physicians and 42 non-physician personnel. The intervention consisted of an educational session about guideline-recommended care for hypertension, five audit and feedback reports, and five disbursements of incentive payments. Incentive payments rewarded participants for chart-documented use of guideline-recommended antihypertensive medications, BP control, and appropriate responses to uncontrolled BP during a prior four-month performance period over the 20-month intervention. To identify potential unintended consequences of the incentives, the study team interviewed study participants, as well as non-participant primary care personnel and leadership at study sites. Chart reviews included data collection on quality measures not related to hypertension. To evaluate the persistence of the effect of the incentives, the study design includes a washout period.</p> <p>Discussion</p> <p>We briefly describe the rationale for the interventions being studied, as well as the major design choices. Rigorous research designs such as the one described here are necessary to determine whether performance-based payment arrangements such as financial incentives result in meaningful quality improvements.</p> <p>Trial Registration</p> <p><url>http://www.clinicaltrials.gov</url><a href="http://www.clinicaltrials.gov/ct2/show/NCT00302718">NCT00302718</a></p
    corecore