34 research outputs found
Dependence of the Roll Angular Vestibuloocular Reflex (aVOR) on Gravity
Little is known about the dependence of the roll angular vestibuloocular reflex (aVOR) on gravity or its gravity-dependent adaptive properties. To study gravity-dependent characteristics of the roll aVOR, monkeys were oscillated about a naso-occipital axis in darkness while upright or tilted. Roll aVOR gains were largest in the upright position and decreased by 7–15% as animals were tilted from the upright. Thus the unadapted roll aVOR gain has substantial gravitational dependence. Roll gains were also decreased or increased by 0.25 Hz, in- or out-of-phase rotation of the head and the visual surround while animals were prone, supine, upright, or in side-down positions. Gain changes, determined as a function of head tilt, were fit with a sinusoid; the amplitudes represented the amount of the gravity-dependent gain change, and the bias, the gravity-independent gain change. Gravity-dependent gain changes were absent or substantially smaller in roll (≈5%) than in yaw (25%) or pitch (17%), whereas gravity-independent gain changes were similar for roll, pitch, and yaw (≈20%). Thus the high-frequency roll aVOR gain has an inherent dependence on head orientation re gravity in the unadapted state, which is different from the yaw/pitch aVORs. This inherent gravitational dependence may explain why the adaptive circuits are not active when the head is tilted re gravity during roll aVOR adaptation. These behavioral differences support the idea that there is a fundamental difference in the central organization of canal-otolith convergence of the roll and yaw/pitch aVORs
Head roll dependent variability of subjective visual vertical and ocular counterroll
We compared the variability of the subjective visual vertical (SVV) and static ocular counterroll (OCR), and hypothesized a correlation between the measurements because of their shared macular input. SVV and OCR were measured simultaneously in various whole-body roll positions [upright, 45 degrees right-ear down (RED), and 75 degrees RED] in six subjects. Gains of OCR were -0.18 (45 degrees RED) and -0.12 (75 degrees RED), whereas gains of compensation for body roll in the SVV task were -1.11 (45 degrees RED) and -0.96 (75 degrees RED). Normalized SVV and OCR variabilities were not significantly different (P > 0.05), i.e., both increased with increasing roll. Moreover, a significant correlation (R (2) = 0.80, slope = 0.29) between SVV and OCR variabilities was found. Whereas the gain of OCR is different from the gain of SVV, trial-to-trial variability of OCR follows the same roll-dependent modulation observed in SVV variability. We propose that the similarities in variability reflect a common otolith input, which, however, is subject to distinct central processing for determining the gain of SVV and OCR