38 research outputs found

    Heterologous mesenchymal stem cells successfully treat femoral pseudarthrosis in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study evaluated the effectiveness of treating pseudarthrosis in rats by using bone marrow cell suspensions or cultures of bone marrow mesenchymal stromal cells</p> <p>Methods</p> <p>Thirty-eight specific pathogen-free (SPF) animals were randomly assigned to four groups: Group 1, Control, without surgical intervention; Group 2 (Placebo), experimental model of femoral pseudarthrosis treated only with saline solution; Group 3, experimental model of femoral pseudarthrosis treated with heterologous bone marrow cells suspension; Group 4, experimental model of femoral pseudarthrosis treated with cultures of heterologous mesenchymal stromal cells from bone marrow. When pseudarthrosis was confirmed by simple radiological studies, digital radiography and histopathology after a 120-day postoperative period, Groups 2, 3 and 4 were treated as above. At 30, 60 and 90 days after the treatment, all animals were evaluated by simple radiological studies, and at the end of the experiment, the animals were assessed by computed axial tomography and anatomopathological and histomorphometric examinations.</p> <p>Results</p> <p>Injected cells were detected in the areas affected by pseudarthrosis using scintigraphy within the first 24 hours after their administration. After 60 days, the animals of Group 3 showed callus formation while the animals of Group 4 presented periosteal reaction and had some consolidated areas. In contrast, Group 2 showed a predominance of fibro-osteoid tissue. After 90 days, bone consolidation and remodeling was observed in all animals from Group 3 whereas animals from Group 4 exhibited partial consolidation and those ones from Group 2 persisted with pseudarthrosis.</p> <p>Conclusion</p> <p>The treatment with heterologous bone marrow cells suspension proved to be effective in the treatment of pseudarthrosis whereas cultures of heterologous bone marrow mesenchymal stromal cells did not show the same potential to aid bone healing.</p

    Beyond the Evidence of the New Hypertension Guidelines. Blood pressure measurement – is it good enough for accurate diagnosis of hypertension? Time might be in, for a paradigm shift (I)

    Get PDF
    Despite widespread availability of a large body of evidence in the area of hypertension, the translation of that evidence into viable recommendations aimed at improving the quality of health care is very difficult, sometimes to the point of questionable acceptability and overall credibility of the guidelines advocating those recommendations. The scientific community world-wide and especially professionals interested in the topic of hypertension are witnessing currently an unprecedented debate over the issue of appropriateness of using different drugs/drug classes for the treatment of hypertension. An endless supply of recent and less recent "drug-news", some in support of, others against the current guidelines, justifying the use of selected types of drug treatment or criticising other, are coming out in the scientific literature on an almost weekly basis. The latest of such debate (at the time of writing this paper) pertains the safety profile of ARBs vs ACE inhibitors. To great extent, the factual situation has been fuelled by the new hypertension guidelines (different for USA, Europe, New Zeeland and UK) through, apparently small inconsistencies and conflicting messages, that might have generated substantial and perpetuating confusion among both prescribing physicians and their patients, regardless of their country of origin. The overwhelming message conveyed by most guidelines and opinion leaders is the widespread use of diuretics as first-line agents in all patients with blood pressure above a certain cut-off level and the increasingly aggressive approach towards diagnosis and treatment of hypertension. This, apparently well-justified, logical and easily comprehensible message is unfortunately miss-obeyed by most physicians, on both parts of the Atlantic. Amazingly, the message assumes a universal simplicity of both diagnosis and treatment of hypertension, while ignoring several hypertension-specific variables, commonly known to have high level of complexity, such as: - accuracy of recorded blood pressure and the great inter-observer variability, - diversity in the competency and training of diagnosing physician, - individual patient/disease profile with highly subjective preferences, - difficulty in reaching consensus among opinion leaders, - pharmaceutical industry's influence, and, nonetheless, - the large variability in the efficacy and safety of the antihypertensive drugs. The present 2-series article attempts to identify and review possible causes that might have, at least in part, generated the current healthcare anachronism (I); to highlight the current trend to account for the uncertainties related to the fixed blood pressure cut-off point and the possible solutions to improve accuracy of diagnosis and treatment of hypertension (II)

    Effects of Insulin-Like Growth Factor-1/Binding Protein-3 Complex on Muscle Atrophy in Rats

    No full text
    Muscle atrophy and wasting is a serious problem that occurs in patients with prolonged debilitating illness, burn injury, spinal injury, as well as with space flight. Current treatment for such atrophy, which often relies on nutritional supplementation and physical therapy, is of limited value in preventing the muscle wasting that occurs. Considerable recent attention has focused on the use of anabolic growth factors such as insulin-like growth factor (IGF-1) in preventing muscle atrophy during limb disuse or with various catabolic conditions. However, potential side effects such as hypoglycemia appear to be limiting factors in the usefulness of IGF-1 for clinical treatment of muscle wasting conditions. The formulation of IGF-1 used in this study (IGF-1/BP3) is already bound to its endogenous-binding protein (BP3) and, as a result, has a greater specificity of action and significantly less hypoglycemic effect. Using a rat model of hind limb suspension (HLS) for 10 days, we induced marked muscle atrophy that was accompanied by enhanced muscle proteolysis and reduced muscle protein content. When HLS rats were treated with IGF-1/BP3 (50 mg/kg, b.i.d.), they retained greater body and muscle mass. Muscle protein degradation was significantly reduced and muscle protein content was preserved. The rate of protein synthesis, although somewhat reduced in HLS muscle, was not significantly elevated by IGF-1/BP3 treatment. Volume density of HLS-treated muscles were increased compared to untreated HLS rats and the actual number of fibers per area of muscle was likewise increased. The results of the current study suggest that IGF-1/BP3 might be useful for inhibiting muscle proteolysis in catabolic conditions and thus preserving muscle protein content and mass
    corecore