9 research outputs found

    Neutralization of pharmacological and toxic activities of Bothrops jararacussu snake venom and isolated myotoxins by Serjania erecta methanolic extract and its fractions

    Get PDF
    Most of the snakebites recorded in Brazil are caused by the Bothrops genus. Given that the local tissue damage caused by this genus cannot be treated by antivenom therapy, numerous studies are focusing on supplementary alternatives, such as the use of medicinal plants. Serjania erecta has already demonstrated anti-inflammatory, antiseptic and healing properties. In the current study, the aerial parts of S. erecta were extracted with methanol, then submitted to chromatographic fractionation on a Sephadex LH20 column and eluted with methanol, which resulted in four main fractions. The crude extract and fractions neutralized the toxic activities of Bothrops jararacussu snake venom and isolated myotoxins (BthTX-I and II). Results showed that phospholipase A2, fibrinogenolytic, myotoxic and hemorrhagic activities were inhibited by the extract. Moreover, the myotoxic and edematous activities induced by BthTX-I, and phospholipase A2 activity induced by BthTX-II, were inhibited by the extract of S. erecta and its fraction. The clotting time on bovine plasma was significantly prolonged by the inhibitory action of fractions SF3 and SF4. This extract is a promising source of natural inhibitors, such as flavonoids and tannins, which act by forming complexes with metal ions and proteins, inhibiting the action of serineproteases, metalloproteases and phospholipases A2

    Analytics for bioactivity profiling of complex mixtures with a focus on venoms

    No full text
    This chapter introduces bioactivity and bioaffinity terms in relation to mixture profiling and gives the significance of bioactivity and/or bioaffinity profiling of biologically active mixtures in general, and for bioactive mixtures in drug discovery research in particular. Further, the chapter gives an overview of the common and less common analytical approaches for bioactivity profiling of bioactive mixtures. Special focus is put on bioassay-guided fractionation as the standard technique employed (in identification and purification of bioactive molecules from a bioactive mixture), and on state-of-the-art post-column bioactivity profiling approaches, also providing examples and limitations of these analytical methods. On-column and pre-column bioactivity profiling analytics is also discussed. Examples of bioactive molecules identified and purified from different natural products are given with emphasis on molecules isolated from animal venoms. Finally, this chapter briefly discusses the importance of bioactivity profiling of metabolic mixtures in drug discovery
    corecore