72 research outputs found

    Selective inhibitors of cardiac ADPR cyclase as novel anti-arrhythmic compounds

    Get PDF
    ADP-ribosyl cyclases (ADPRCs) catalyse the conversion of nicotinamide adenine dinucleotide to cyclic adenosine diphosphoribose (cADPR) which is a second messenger involved in Ca2+ mobilisation from intracellular stores. Via its interaction with the ryanodine receptor Ca2+ channel in the heart, cADPR may exert arrhythmogenic activity. To test this hypothesis, we have studied the effect of novel cardiac ADPRC inhibitors in vitro and in vivo in models of ventricular arrhythmias. Using a high-throughput screening approach on cardiac sarcoplasmic reticulum membranes isolated from pig and rat and nicotinamide hypoxanthine dinuleotide as a surrogate substrate, we have identified potent and selective inhibitors of an intracellular, membrane-bound cardiac ADPRC that are different from the two known mammalian ADPRCs, CD38 and CD157/Bst1. We show that two structurally distinct cardiac ADPRC inhibitors, SAN2589 and SAN4825, prevent the formation of spontaneous action potentials in guinea pig papillary muscle in vitro and that compound SAN4825 is active in vivo in delaying ventricular fibrillation and cardiac arrest in a guinea pig model of Ca2+ overload-induced arrhythmia. Inhibition of cardiac ADPRC prevents Ca2+ overload-induced spontaneous depolarizations and ventricular fibrillation and may thus provide a novel therapeutic principle for the treatment of cardiac arrhythmias

    Molecular Characterization of a Novel Intracellular ADP-Ribosyl Cyclase

    Get PDF
    Background. ADP-ribosyl cyclases are remarkable enzymes capable of catalyzing multiple reactions including the synthesis of the novel and potent intracellular calcium mobilizing messengers, cyclic ADP-ribose and NAADP. Not all ADP-ribosyl cyclases however have been characterized at the molecular level. Moreover, those that have are located predominately at the outer cell surface and thus away from their cytosolic substrates. Methodology/Principal Findings. Here we report the molecular cloning of a novel expanded family of ADP-ribosyl cyclases from the sea urchin, an extensively used model organism for the study of inositol trisphosphate-independent calcium mobilization. We provide evidence that one of the isoforms (SpARC1) is a soluble protein that is targeted exclusively to the endoplasmic reticulum lumen when heterologously expressed. Catalytic activity of the recombinant protein was readily demonstrable in crude cell homogenates, even under conditions where luminal continuity was maintained. Conclusions/Significance. Our data reveal a new intracellular location for ADP-ribosyl cyclases and suggest that production of calcium mobilizing messengers may be compartmentalized

    The Lysosome and Intracellular Signalling.

    Get PDF
    In addition to being the terminal degradative compartment of the cell's endocytic and autophagic pathways, the lysosome is a multifunctional signalling hub integrating the cell's response to nutrient status and growth factor/hormone signalling. The cytosolic surface of the limiting membrane of the lysosome is the site of activation of the multiprotein complex mammalian target of rapamycin complex 1 (mTORC1), which phosphorylates numerous cell growth-related substrates, including transcription factor EB (TFEB). Under conditions in which mTORC1 is inhibited including starvation, TFEB becomes dephosphorylated and translocates to the nucleus where it functions as a master regulator of lysosome biogenesis. The signalling role of lysosomes is not limited to this pathway. They act as an intracellular Ca2+ store, which can release Ca2+ into the cytosol for both local effects on membrane fusion and pleiotropic effects within the cell. The relationship and crosstalk between the lysosomal and endoplasmic reticulum (ER) Ca2+ stores play a role in shaping intracellular Ca2+ signalling. Lysosomes also perform other signalling functions, which are discussed. Current views of the lysosomal compartment recognize its dynamic nature. It includes endolysosomes, autolysosome and storage lysosomes that are constantly engaged in fusion/fission events and lysosome regeneration. How signalling is affected by individual lysosomal organelles being at different stages of these processes and/or at different sites within the cell is poorly understood, but is discussed

    The acid test: the discovery of two-pore channels (TPCs) as NAADP-gated endolysosomal Ca2+ release channels

    Get PDF
    In this review, we describe the background and implications of our recent discovery that two-pore channels (TPCs) comprise a novel class of calcium release channels gated by the intracellular messenger nicotinic acid adenine dinucleotide phosphate (NAADP). Their localisation to the endolysosomal system highlights a new function for these organelles as targets for NAADP-mediated Ca(2+) mobilisation. In addition, we describe how TPCs may also trigger further Ca(2+) release by coupling to the endoplasmic reticular stores through activation of IP(3) receptors and ryanodine receptors

    Inositol triphosphate induces calcium release from nonmitochondrial stores in sea urchin egg homogenates

    No full text
    This study presents evidence that inositol triphosphate (IP3) releases Ca2+ from intracellular stores in sea urchin eggs. First, high voltage discharge was used to transiently permeabilize eggs and introduce IP3; the resultant induction of cortical reactions (a well characterized Ca2+-dependent event) provided indirect evidence that IP3 released Ca2+ from intracellular stores. Next, Ca2+ uptake and release from egg homogenates and homogenate fractions were monitored by both Ca2+ minielectrodes and the fluorescent Ca2+ indicator, quin-2. Both assay methods showed Ca2+ release upon IP3 addition, with a half-maximal response at 50-60 nM IP3 and maximal Ca2+ release at ~1 ΞΌM IP3. Homogenates were 300-fold more sensitive to IP3 than IP2, and Ca2+ release was 95% inhibited by the Ca2+ antagonist TMB-8 (3 mM). Fractionation by density gradient centrifugation showed that activities for Ca2+ sequestration and IP3 responsiveness co-purified with endoplasmic reticulum microsomes. Following an initial IP3 addition, homogenates were refractory (desensitized) to additional IP3. However, if homogenates were centrifuged and the vesicles resuspended in media lacking IP3, they would respond to added IP3, therefore, showing that desensitization is most likely due to the presence of IP3. This study also shows that the mechanism of IP3 action is inherent to the microsomes and ions present in the medium used, with no cytoplasmic factors being required. The stability of this microsome preparation and the purification obtained with density gradient centrifugation make this a promising system with which to further characterize the mechanism of IP3 action.link_to_subscribed_fulltex

    Structural determination of a cyclic metabolite of NAD+ with intracellular Ca2+-mobilizing activity

    No full text
    Incubation of NAD+ with extracts from sea urchin eggs resulted in production of a metabolite which could mobilize intracellular Ca2+ stores of the eggs. In this study we present structural evidence indicating that the metabolite is a cyclized ADP-ribose having an N-glycosyl linkage between the anomeric carbon of the terminal ribose unit and the N6-amino group of the adenine moiety. In view of this structure we propose cyclic ADP-ribose as the common name for the metabolite. The purification procedure for the metabolite consisted of deproteinizing the incubated egg extracts and sequentially chromatographing the extracts through three different high pressure liquid chromatography (HPLC) columns. The homogeneity of the purified metabolite was further verified by HPLC on a Partisil 5 SAX column. Using radioactive precursor NAD+ with label at various positions it was demonstrated that the metabolite was indeed derived from NAD+ and that the adenine ring as well as the adenylate Ξ±-phosphate were retained in the metabolite whereas the nicotinamide group was removed. This was confirmed by 1H NMR and two-dimensional COSY experiments, which also allowed the identification of all 12 protons on the two ribosyl units as well as the two protons on the adenine ring. From the chemical shifts of the two anomeric protons it was concluded that the C-1 carbons of both ribosyl units were still bonded to nitrogen. The positive and negative ion fast atom bombardment mass spectra showed (M + Na)+, (M - H + 2Na)+, (M - H)-, and (M - 2H + Na)- peaks at m/z 564, 586, 540, and 562, respectively. Exact mass measurements indicated a molecular weight of 540.0526 for (M - H)-. This together with the constraints imposed by the results from NMR, radioactive labeling, and total phosphate determination uniquely specified a molecular composition of C15H21N5O13P2. Analysis by 1H NMR and mass spectroscopy of the only major breakdown product of the metabolite after prolonged incubation at room temperature established that it was ADP-ribose, thus providing strong support for the cyclic structure.link_to_subscribed_fulltex

    A volatile inhibitor immobilizes sea urchin sperm in semen by depressing the intracellular pH

    No full text
    Sea urchin spermatozoa are normally immotile in semen, but motility can be initiated by increasing gas flow over the semen-for example, by blowing N2 gas over a thin layer of semen. This result indicates that sperm motility is not O2 limited and suggests that seminal fluid contains a volatile inhibitor of motility which is responsible for the paralysis of sperm in semen. This inhibitor might be carbon dioxide, which reversibly immobilizes sperm. 31P-NMR measurements of pH show that the sperm intracellular pH (pHi) increases by 0.36 pH unit upon dilution of semen into seawater. Since previous studies have shown that this magnitude of pH increase is sufficient to trigger sperm motility, we suggest that the volatile inhibitor is inhibiting sperm motility in semen by depressing the pHi. A simple hypothesis that explains these observations is that the volatile motility inhibitor is CO2, which could acidify pHi as a diffusable weak acid. In this regard, sperm diluted into seawater release acid, and this acid release is related to the pHi increase and motility initiation. In fact, nearly half of the acid released by sperm upon dilution is volatile and may therefore be due to CO2 efflux. Most of the acid, however, cannot be attributed to CO2 release because it is not volatile. Thus, when sperm are diluted into seawater, they raise their pHi by releasing CO2 and protons from the cytoplasm into the surrounding seawater. Β© 1983.link_to_subscribed_fulltex

    Co-Induction of LTP and LTD and Its Regulation by Protein Kinases and Phosphatases

    No full text
    The cellular properties of long-term potentiation (LTP) following pairing of pre- and postsynaptic activity were examined at a known glutamatergic synapse in the leech, specifically between the pressure (P) mechanosensory and anterior pagoda (AP) neurons. Stimulation of the presynaptic P cell (25 Hz) concurrent with a 2 nA depolarization of the postsynaptic AP cell significantly potentiated the P-to-AP excitatory postsynaptic potential (EPSP) in an N-methyl-d-aspartate receptor (NMDAR)-dependent manner based on inhibitory effects of the NMDAR antagonist MK801 and inhibition of the NMDAR glycine binding site by 7-chlorokynurenic acid. LTP was blocked by injection of bis-(o-aminophenoxy)-N,N,Nβ€²,Nβ€²-tetraacetic acid (BAPTA) into the postsynaptic (AP) cell, indicating a requirement for postsynaptic elevation of intracellular Ca2+. Autocamtide-2-related inhibitory peptide (AIP), a specific inhibitor of Ca2+/calmodulin-dependent kinase II (CaMKII), and Rp-cAMP, an inhibitor of protein kinase A (PKA), also blocked pairing-induced potentiation, indicating a requirement for activation of CaMKII and PKA. Interestingly, application of AIP during pairing resulted in significantly depressed synaptic transmission. Co-application of AIP with the protein phosphatase inhibitor okadaic acid restored synaptic transmission to baseline levels, suggesting an interaction between CaMKII and protein phosphatases during induction of activity-dependent synaptic plasticity. When postsynaptic activity preceded presynaptic activity, NMDAR-dependent long-term depression (LTD) was observed that was blocked by okadaic acid. Postsynaptic injection of botulinum toxin blocked P-to-AP potentiation while postsynaptic injection of pep2-SVKI, an inhibitor of AMPA receptor endocytosis, inhibited LTD, supporting the hypothesis that glutamate receptor trafficking contributes to both LTP and LTD at the P-to-AP synapse in the leech
    • …
    corecore