14 research outputs found

    Maternal Environment Influences Cocaine Intake in Adulthood in a Genotype-Dependent Manner

    Get PDF
    Background: Accumulating epidemiological evidence points to the role of genetic background as a modulator of the capacity of adverse early experiences to give rise to mental illness. However, direct evidence of such gene-environment interaction in the context of substance abuse is scarce. In the present study we investigated whether the impact of early life experiences on cocaine intake in adulthood depends on genetic background. In addition, we studied other behavioral dimensions associated with drug abuse, i.e. anxiety- and depression-related behaviors. Methodology/Principal Findings: For this purpose, we manipulated the maternal environment of two inbred mouse strains, the C57BL/6J and DBA/2J by fostering them with non-related mothers, i.e. the C3H/HeN and AKR strains. These mother strains show respectively high and low pup-oriented behavior. As adults, C57BL/6J and DBA/2J were tested either for cocaine intravenous self-administration or in the elevated plus-maze and forced swim test (FST). We found that the impact of maternal environment on cocaine use and a depression-related behavior depends upon genotype, as cocaine self-administration and behavior in the FST were influenced by maternal environment in DBA/2J, but not in C57BL/6J mice. Anxiety was not influenced by maternal environment in either strain. Conclusions/Significance: Our experimental approach could contribute to the identification of the psychobiological factor

    Dopaminergic neurotransmission in the nucleus accumbens modulates social play behavior in rats.

    No full text
    Social play behavior is a highly rewarding form of social interaction displayed by young mammals. Social play is important for neurobehavioral development and it has been found to be impaired in several developmental psychiatric disorders. In line with the rewarding properties of social play, we have previously identified the nucleus accumbens (NAc) as an important site of action for endocannabinoid and opioid modulation of this behavior. NAc dopamine has a well-known role in certain components of reward processes, such as incentive motivation. However, its contribution to the positive emotional aspects of social interactions is less clear. Therefore, we investigated the role of dopaminergic neurotransmission in the NAc in social play behavior in rats. We found that intra-NAc infusion of the dopamine releaser/reuptake inhibitor amphetamine increased social play behavior, which was dependent on activation of both D1 and D2 dopamine receptors. This increase in social play behavior was mimicked by intra-NAc infusion of the dopamine receptor agonist apomorphine, but not of the dopamine reuptake inhibitor GBR-12909. Blockade of either D1 or D2 NAc dopamine receptors reduced social play in animals highly motivated to play as a result of longer social isolation before testing. Last, blockade of NAc dopamine receptors prevented the play-enhancing effects of endocannabinoid and opioid receptor stimulation. These findings demonstrate an important modulatory role of NAc dopaminergic neurotransmission in social play. Thus, functional activity in the mesolimbic dopamine pathway plays an important role in adaptive social development, whereas abnormal NAc dopamine function may underlie the social impairments observed in developmental psychiatric disorders such as autism, attention-deficit hyperactivity disorder (ADHD) or early-onset schizophrenia.Neuropsychopharmacology accepted article preview online, 10 February 2016. doi:10.1038/npp.2016.22

    Modulation of the acoustic startle response by the level of arousal: comparison of clonidine and modafinil in healthy volunteers

    No full text
    A sudden loud sound evokes an electromyographic (EMG) response from the orbicularis oculi muscle in humans together with an auditory evoked potential (AEP) and an increase in skin conductance (SC). Startle responses are inhibited by weak prepulses (prepulse inhibition, (PPI)) and may also be modified by the level of alertness. We compared the sedative drug clonidine and the alerting drug modafinil on sound-evoked EMG, AEP, and SC responses, on the PPI of these responses and on level of arousal and autonomic functions. Sixteen healthy male volunteers participated in four weekly sessions (clonidine 0.2 mg, modafinil 400 mg, their combination, placebo) in a double-blind, cross-over, balanced design. Responses were evoked by sound pulses of 115 and 85 dB (PPI) for 40 ms and recorded conventionally. Level of alertness, autonomic functions (pupil diameter, blood pressure, heart rate, salivation, temperature) and the plasma levels of the hormones prolactin, thyroid-stimulating hormone and growth hormone were also measured. Data were analyzed with analysis of variance with multiple comparisons. Both prepulses and clonidine attenuated all three startle responses and modafinil antagonized clonidine's effects on the EMG and AEP responses. None of the drugs affected PPI. Clonidine showed sedative and sympatholytic effects, and modafinil showed alerting and sympathomimetic effects. In conclusion, startle responses were susceptible not only to PPI but also to the level of arousal
    corecore