11 research outputs found

    Constitutive MAP Kinase Activation in Hematopoietic Stem Cells Induces a Myeloproliferative Disorder

    Get PDF
    Myelodysplastic syndromes/myeloproliferative neoplasms (MDS/MPNs) are a group of myeloid neoplasms in which abnormal activation of the Ras signaling pathway is commonly observed. The PI3K/Akt pathway is a known target of Ras; however, activation of the PI3K/Akt pathway has been shown to lead to neoplastic transformation of not only myeloid but also lymphoid cells, suggesting that pathways other than the PI3K/Akt pathway should play a central role in pathogenesis of Ras-mediated MDS/MPN. The MEK/ERK pathway is another downstream target of Ras, which is involved in regulation of cell survival and proliferation. However, the role of the MEK/ERK pathway in the pathogenesis of MDS/MPN remains unclear. Here, we show that introduction of a constitutively activated form of MEK into hematopoietic stem cells (HSCs) causes hematopoietic neoplasms that are limited to MDS/MPNs, despite the multipotent differentiation potential of HSCs. Active MEK-mediated MDS/MPNs are lethal, but are not considered a frank leukemia because it cannot be transplanted into naïve animals. However, transplantation of MDS/MPNs co-expressing active MEK and an anti-apoptotic molecule, Bcl-2, results in T-cell acute lymphocytic leukemia (T-ALL), suggesting that longevity of cells may impact transplantability and alter disease phenotype. Our results clearly demonstrate the proto-oncogenic property of the MEK/ERK pathway in hematopoietic cells, which manifest in MDS/MPN development

    aP2-Cre-Mediated Inactivation of Estrogen Receptor Alpha Causes Hydrometra

    Get PDF
    In this study we describe the reproductive phenotypes of a novel mouse model in which Cre-mediated deletion of ERα is regulated by the aP2 (fatty acid binding protein 4) promoter. ERα-floxed mice were crossed with transgenic mice expressing Cre-recombinase under the control of the aP2 promoter to generate aP2-Cre/ERα(flox/flox) mice. As expected, ERα mRNA levels were reduced in adipose tissue, but in addition we also detected an 80% reduction of ERα levels in the hypothalamus of aP2-Cre/ERα(flox/flox) mice. Phenotypic analysis revealed that aP2-Cre/ERα(flox/flox) female mice were infertile. In line with this, aP2-Cre/ERα(flox/flox) female mice did not cycle and presented 3.8-fold elevated estrogen levels. That elevated estrogen levels were associated with increased estrogen signaling was evidenced by increased mRNA levels of the estrogen-regulated genes lactoferrin and aquaporin 5 in the uterus. Furthermore, aP2-Cre/ERα(flox/flox) female mice showed an accumulation of intra-uterine fluid, hydrometra, without overt indications for causative anatomical anomalies. However, the vagina and cervix displayed advanced keratosis with abnormal quantities of accumulating squamous epithelial cells suggesting functional obstruction by keratin plugs. Importantly, treatment of aP2-Cre/ERα(flox/flox) mice with the aromatase inhibitor Letrozole caused regression of the hydrometra phenotype linking increased estrogen levels to the observed phenotype. We propose that in aP2-Cre/ERα(flox/flox) mice, increased serum estrogen levels cause over-stimulation in the uterus and genital tracts resulting in hydrometra and vaginal obstruction
    corecore