17 research outputs found

    Boolean functions for homomorphic-friendly stream ciphers

    Get PDF
    The proliferation of small embedded devices having growing but still limited computing and data storage facilities, and the related development of cloud services with extensive storage and computing means, raise nowadays new privacy issues because of the outsourcing of data processing. This has led to a need for symmetric cryptosystems suited for hybrid symmetric-FHE encryption protocols, ensuring the practicability of the FHE solution. Recent ciphers meant for such use have been introduced, such as LowMC, Kreyvium, FLIP, and Rasta. The introduction of stream ciphers devoted to symmetric-FHE frameworks such as FLIP and its recent modification has in its turn posed new problems on the Boolean functions to be used in them as filter functions. We recall the state of the art in this matter and present further studies (without proof)

    On the Concrete Security of Goldreich’s Pseudorandom Generator

    Get PDF
    International audienceLocal pseudorandom generators allow to expand a short random string into a long pseudo-random string, such that each output bit depends on a constant number d of input bits. Due to its extreme efficiency features, this intriguing primitive enjoys a wide variety of applications in cryptography and complexity. In the polynomial regime, where the seed is of size n and the output of size n s for s > 1, the only known solution, commonly known as Goldreich's PRG, proceeds by applying a simple d-ary predicate to public random sized subsets of the bits of the seed. While the security of Goldreich's PRG has been thoroughly investigated, with a variety of results deriving provable security guarantees against class of attacks in some parameter regimes and necessary criteria to be satisfied by the underlying predicate, little is known about its concrete security and efficiency. Motivated by its numerous theoretical applications and the hope of getting practical instantiations for some of them, we initiate a study of the concrete security of Goldreich's PRG, and evaluate its resistance to cryptanalytic attacks. Along the way, we develop a new guess-and-determine-style attack, and identify new criteria which refine existing criteria and capture the security guarantees of candidate local PRGs in a more fine-grained way

    On the nonlinearity of monotone Boolean functions

    No full text
    We first prove the truthfulness of a conjecture on the nonlinearity of monotone Boolean functions in even dimension, proposed in the recent paper ``Cryptographic properties of monotone Boolean functions , by D. Joyner, P. Stanica, D. Tang and the author, to appear in the Journal of Mathematical Cryptology. We prove then an upper bound on such nonlinearity, which is asymptotically much stronger than the conjectured upper bound and than the upper bound proved for odd dimension in this same paper. This bound shows a deep weakness of monotone Boolean functions; they are too closely approximated by affine functions for being usable as nonlinear components in cryptographic applications. We deduce a necessary criterion to be satisfied by a Boolean (resp. vectorial) function for being nonlinear

    Stable isotopic signatures for hydrogeochemical characterisation of ground water from Pondicherry to Nagapattinam, Tamil Nadu

    No full text
    © Capital Publishing Company 2015.Groundwater recharge is a critical hydrological parameter. Identification of recharge zones and recharge estimates are essential to water resources management (Scanlon and Cook, 2002; Raju et al., 2006). In recent years, the overgrowing population and climate change are putting water resources under pressure all over the world. Sustainable management of aquifers to meet human and ecosystem needs will require protection of recharge areas and their augmentation (Reddy et al., 2000)
    corecore